Navajo Nation

Water Quality Standards for Metals and Protection of Crops, Livestock, and Humans

Submitted to:

Navajo Nation Environmental Protection Agency NPDES Water Quality Program Window Rock, AZ 86515

Prepared by:

Tetra Tech, Inc. 10711 Red Run Blvd. Suite 105 Owings Mills, MD 21117

February 28, 2019

Contents

List of Tables	iii
List of Figures	vi
Executive Summary	ix
1. Introduction	1
2. Current Regulatory Practices Regarding Water Quality Standards for Protection of C Livestock	
2.1. States Agricultural Standards	3
2.2. Agricultural Water Standards Used by Tribes	5
2.3. Sources of Information	8
2.4. Scientific Basis of Numeric Values	9
2.4.1. Metals of Focus in this Report	10
2.4.2. Other Metals	14
3. Summary of Metal Bioaccumulation in Crops and Livestock	18
3.1. Metals Toxicity in Plants	18
3.1.1. Toxicity of Metals in Plants	18
3.2. Factors Affecting Metals Bioaccumulation in Plants	24
3.3. Metals Toxicity and Bioaccumulation in Livestock	36
3.3.1. Arsenic (As)	37
3.3.2. Cadmium (Cd)	42
3.3.3. Copper (Cu)	46
3.3.4. Iron (Fe)	50
3.3.5. Lead (Pb)	52
3.3.6. Nickel (Ni)	55
3.3.7. Zinc (Zn)	56
3.3.8. Toxicity Summary	59
3.4. Metals Bioaccumulation in Beef	60
4. Current Regulatory Human Health Water Quality Criteria or Guidelines for Metals in	ı Water 62
4.1. Overview of U.S. EPA Human Health Ambient Water Quality Criteria (AWQC) for	or Pollutants 62
4.2. Summary of Available Information Regarding Metal Bioaccumulation and Biom	•
4.2.1. Navajo Fish Tissue Study	64
4.2.2. Other Relevant Fish Tissue Information from the Literature	65

	4	4.2.3		Laboratory Soil and Sediment Toxicity Study	67	
	4	4.2.4	٠.	Other Studies	77	
5.	ı	Ехро	sure	to Metals from Crops, Livestock, and Water	79	
	5.1		Ехро	sure Evaluation: Potential Exposure Pathways and Conceptual Site Model	79	
	5.2	2.	Ехро	sure parameters and chemical-specific inputs	81	
	5.3	3.	Toxio	city Assessment	83	
6.	(Calcu	ulatio	on of Protective Metal Thresholds for Agricultural Uses	95	
	6.1		Agric	cultural Water Quality Standards	95	
	6	5.1.1		Method	95	
	6	5.1.2		Water Quality Standards for Plants and Livestock	97	
	(5.1.3		Exposure to Livestock Through Drinking Water	97	
	6	6.1.4	٠.	Agriculture Risk-Based AWQC	98	
	6.2	<u>.</u> .	Hum	an Health Risk Based Ambient Water Quality Standards	105	
	6	6.2.1		Methods	105	
	6	5.2.2		Water Quality Standards calculations	106	
	6.3	3.	Unce	ertainties	112	
	6.4	١.	Sum	mary and Recommendations	112	
	6	5.4.1		Agricultural AWQC	113	
	6	6.4.2		Human Health AWQC	113	
	(6.4.3		Recommendations	113	
7.	9	Sumi	mary	and Conclusions	114	
8.	I	Liter	ature	e Cited	119	
A.	,	Арре	endix	: State and Tribal Water Quality Standards and San Juan River Data	129	
В.	,	Appendix: Navajo Sediment and Soil Laboratory Toxicity Study184				

List of Tables

Table E-1. Summary of identified thresholds for 7 metals of concern in feed, water and soils, across a range of livestock and wildlife	
Table E-2. Summary of risk-based water quality standards (mg/L) for crops and livestock	xii
Table E-3. Summary of risk-based metal water quality standards for protection of human health	xiii
Table 2-1. States with numeric agricultural water quality standards for metals	3
Table 2-2. Tribes with numeric agricultural standards for metals	5
Table 3-1. Toxic effects of heavy metals on plants	19
Table 3-2. Bioaccumulation levels of heavy metals in plants. (When applicable, significant differences in bold; standard deviations are in parentheses following the means).	
Table 3-3. Bioaccumulation Factors used for Assessment of Metals Uptake by Plants (Baes et al. 1984	4) 36
Table 3-4. Arsenic compounds toxicity to sheep	38
Table 3-5. Toxicity of Arsenic compounds to Cattle	39
Table 3-6. Arsenic compounds toxicity, other animals	40
Table 3-7. Arsenic compounds toxicity in water	42
Table 3-8. Arsenic compounds toxicity in soil	42
Table 3-9. Cadmium compounds toxicity to sheep	43
Table 3-10. Cadmium compounds toxicity to cattle	44
Table 3-11. Cadmium compounds toxicity, other animals	45
Table 3-12. Cadmium compound toxicity in water	46
Table 3-13. Cadmium compound toxicity in soil	46
Table 3-14. Copper compound toxicity to sheep	47
Table 3-15. Copper compound toxicity to cattle	48
Table 3-16. Copper compound toxicity, other animals	49
Table 3-17. Copper compounds toxicity in water	50
Table 3-18. Copper compounds toxicity in soil	50
Table 3-19. Iron compound toxicity to cattle.	51
Table 3-20. Iron compound toxicity, other animals	51
Table 3-21. Lead compound toxicity to sheep	52
Table 3-22. Lead compound toxicity to cattle.	53

Table 3-23. Lead compound toxicity, other animals54
Table 3-24. Lead compound toxicity in water
Table 3-25. Lead compound toxicity in soil
Table 3-26. Nickel compound toxicity to cattle
Table 3-27. Nickel compound toxicity, other animals
Table 3-28. Nickel compound toxicity in water
Table 3-29. Zinc compound toxicity to sheep57
Table 3-30. Zinc compounds toxicity to cattle
Table 3-31. Zinc compound toxicity, other animals58
Table 3-32. Zinc compounds toxicity in water59
Table 3-33. Zinc compounds toxicity in soil59
Table 3-34. Summary of identified thresholds of concern for 7 metals in feed, water and soils, across a range of livestock and wildlife
Table 3-35. Ingestion-to-Beef Transfer Factor
Table 4-1. Summary of literature fish tissue concentrations observed for several metals of concern in fish species that are relevant to the San Juan River and Lake Powell. $dw = dry$ weight, $ww = wet$ weight 66
Table 4-2. Trophic levels and main dietary items for select fish species relevant to the San Juan River and Lake Powell
Table 4-3. Summary of soils collected by Navajo Nation personnel and used in soil toxicity evaluations. 67
Table 4-4. Summary of sediments collected by Navajo Nation personnel and used in sediment toxicity evaluations
Table 4-5. Summary of Zea mays L. (corn) survival and growth endpoints for soils. Shaded cells are significantly less than controls (p < 0.05)
Table 4-6. Summary of Cucumis melo (melon) survival and growth endpoints for Navajo Nation soils. Shaded cells are significantly less than controls (p < 0.05)
Table 4-7. Summary of Medicago sativa (alfalfa) survival and growth endpoints for soils. Shaded cells are significantly less than controls (p $<$ 0.05)71
Table 4-8. Summary of Cucurbita pepo (squash) survival and growth endpoints for soils. Shaded cells are significantly less than controls (p $<$ 0.05)71
Table 4-9. Summary of Hyalella azteca survival, growth and reproduction endpoints for Anacostia River sediments. Shaded cells are significantly less than controls ($p < 0.05$)
Table 4-10. Summary of results of general chemistry on Navajo Nation soils74

Table 4-11.Summary of metals analysis on Navajo Nation soils. Bolded values indicate the maximum measured value across all soils. Shaded cells indicate measured value above the Soil Screening Level for plants (Efroymson et al., 1997)7
Table 4-12. Summary of general chemistry and metals analysis on Navajo Nation sediments. Bolded values indicate the maximum measured value across all sediments. Shaded cells indicate measured value above the Sediment Screening Level (Buchman, 2008). Shaded cells indicate measured value above the Soil Screening Level of plants (Efoymson et al., 1997)
Table 5-1. Exposure pathways evaluated8
Table 5-2. Exposure Equations and Parameters used in Water Quality Standards Assessment8
Table 5-3. Bioaccumulation values8
Table 5-4. Toxicity values for the human health risk-based AWQC8
Table 5-5. Toxicity reference values and screening levels for agricultural receptors in calculating AWQC
Table 6-1. Water Concentration that would result in a soil concentration that poses toxicity to plants 9
Table 6-2. Ambient water quality standards based on toxicity to crops10
Table 6-3. AWQC for cattle from water ingestion alone and for combined water, soil, and crop ingestion for cattle
Table 6-4. AWQC for sheep from water ingestion alone and for combined water, soil, and crop ingestion
Table 6-5. AWQC for Humans based on Domestic Water Use
Table 6-6. AWQC based on human ingestion of homegrown produce10
Table 6-7. AWQC for ingestion of homegrown meat products, including the adjustment to a hazard inde of 1.0 and risk of 1E-6
Table 6-8. AWQC for human health11
Table 7-1. AWQC Comparisons
Table 7-2. Summary of risk-based water quality standards (mg/L) for crops, livestock, and human health
Table A-1. Compilation of State Agricultural Water Quality Standards13
Table A-2.Compilation of Tribes Agricultural Water Quality Standards15
Table A-3. Livestock Numeric Standards from U.S. EPA and Other Sources Cited in State and Tribal Water Quality Standards
Table A-4. Crop Irrigation Numeric Standards from U.S. EPA and Other Sources Cited in State and Tribal Water Quality Standards

Table A-5. San Juan River Upstream (New Mexico) Reach fillet tissue concentrations (mg/Kg, wet weig	ght)
	181
Table A-6. Table A- 6. San Juan River Upstream (New Mexico) Reach fillet tissue concentrations (mg/k wet weight) (continued)	
wet weight) (continued)	102
Table A-7. San Juan River Downstream (Utah) Reach fillet tissue	183
List of Figures	
List of Figures	
Figure 3-1. Cadmium concentrations in various plants (from Derrick 2006)	34
Figure 5-1. Conceptual site model (CSM) displaying complete pathways of metal exposure to Navajo	
people and potential effects of crops, livestock, ad human health	80

Acronyms/Abbreviations

Acronym/Abbreviation	Definition	
Ag	silver	
Al	aluminum	
As	Arsenic	
ATP	adenosine triphosphate	
AVS	acid volatile sulfides	
AWQC	ambient water quality criteria	
Ba	barium	
BAF	Bioaccumulation factor	
BAR	bioaccumulation ratio	
Ве	beryllium	
BW	Body weight	
Ca	Calcium	
Cd	Cadmium	
Со	cobalt	
CO ₂	Carbon dioxide	
COPC	constituents of potential concern	
Cr	Chromium	
CSM	conceptual site model	
Cu	Copper	
CWA	Clean Water Act	
d	Day	
DI	drinking water intake	
dw	dry weight	
EMEG	environmental media evaluation guides	
ESV	Ecological Screening Value	
EPA	Environmental Protection Agency	
Eqs.	equations	
ERA	ecological risk assessment	
Fe	Iron	
FRC	fish consumption rate	
g	gram	
GKM	Gold King Mine	
Hg	Mercury	
IR	ingestion rate	
IRIS	Integrated Risk Information System	
K	potassium	
kg	kilogram	

(continued).

Acronym/Abbreviation	Definition	
L	liter	
LOAEL	Lowest observed adverse effects level	
mg	milligram	
Mg	magnesium	
mM	milli-molar	
mm	milli-meters	
Mn	manganese	
Мо	molybdenum	
Na	sodium	
ND	not detected	
NOAEL	no observed adverse effects level	
Ni	nickel	
NNEPA	Navajo Nation Environmental Protection Agency	
P	phosphate	
Pb	lead	
ppm	parts per million	
RfD	reference dose	
RMC	risk management criteria	
RSC	relative source contribution	
Sb	antimony	
Se	selenium	
SJR	San Juan River	
SLERA	screening level ecological risk assessment	
SLRA	screening level risk assessment	
Sr	strontium	
TI	thallium	
TL	trophic level	
TOC	total organic carbon	
μg	micro-gram	
μΜ	micro-molar	
U.S. EPA	United States Environmental Protection Agency	
V	vanadium	
WQC	water quality criteria	
WSC	Wildlife Soil Criteria	
wt	weight	
ww	wet weight	
Zn	zinc	

Executive Summary

The Navajo Nation contracted Tetra Tech, Inc. to evaluate current water quality metal standards for protection of crops, livestock, and humans consuming crops and livestock, the rationale behind those standards if any, and development of science-based standards where feasible. This Report presents and discusses these objectives for metals of concern that were discharged during the Gold King Mine spill in August 2015 into the Animas River, Colorado. That spill, which contained elevated concentrations of arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), nickel (Ni), zinc (Zn), and other metals, continued down the San Juan River, through Navajo Nation lands, and into Lake Powell downstream. Using comprehensive literature reviews and a human health risk assessment framework, this Report derives potential water quality metal standards for protection of crops, livestock, and humans that consume crop and livestock products, where sufficient information exists.

The science behind developing appropriate water quality standards for crop and livestock protection is complex for metals that may bioaccumulate and be transferred through the food chain. Uptake of water is only one of the potential pathways by which livestock may accumulate metals; ingestion of crops that have been exposed to metals is another pathway. When considering human consumption of crops or livestock products that have been exposed to elevated concentrations of metals, multiple pathways need to be considered including ingestion of water, crops, and livestock, all of which may be exposed to elevated metals.

Most states and tribes include general agricultural uses, livestock watering, or irrigation as designated uses. All states have numerical metals standards; however, most of these are aquatic life or human health ambient water quality standards. Eleven states and two Water Quality Control Boards in California list numeric metals standards for agricultural uses in their water quality standards. Two states (Idaho and Washington) reference agricultural water quality standards for metals but do not provide specific values for these uses in their standards. Most states and tribes that have numeric standards for agricultural designated uses cite or use U.S. Environmental Protection Agency's (U.S. EPA's) 1972 Water Quality Criteria, however, calculations were not provided in U.S. EPA's 1972 criteria for livestock watering or crop irrigation and in most cases, clear rationale for state and tribal numeric standards are lacking.

Published literature indicates that metal toxicity to livestock and wildlife is greater than it is for plants or crops. Recent information suggests that for some of the metals examined, the toxicity may be greater than was assumed in setting the 1972 U.S. EPA criteria for protection of livestock. Based on an extensive literature review 7 metals were identified as highest priority in terms of toxicity to livestock as shown in Table E-1.

Laboratory testing of soil samples from Navajo lands and sediment samples from the San Juan River indicated some toxicity potential using *Hyalella* (amphipod) in sediment testing and several crop plant species in soil testing (alfalfa, melon, corn, and squash). Soil samples did not exceed screening values used by U.S. EPA for most metals except Cd, molybdenum (Mo), selenium (Se), vanadium (V), and Zn. Statistical comparisons of plant growth effects with soil metal concentrations did not indicate significant relationships, however, in general the range of metal concentrations was limited in the soil samples tested.

To develop risk-based metal criteria to protect human health, the assessment included sources, transport mechanisms, points of exposure, exposure pathways, and intermediate receptors. Water can be used for domestic purposes, and exposure routes to humans can also occur through ingestion of plants and animals that utilize the same water source. Agriculture exposure pathways included livestock and plants, both as receptors and as an additional exposure pathway to humans who ingest homegrown products. Dietary exposure pathways represent a major exposure route for metals and these pathways were assessed as part of the agricultural risk-based assessment, in which it is assumed that surface water will be used to irrigate crops and pasture lands as well as to water livestock. Further, the crops are assumed to be food for livestock. Homegrown produce was assessed as well, in a manner separate from pasture and agricultural crop irrigation to more accurately assess the potential exposure route of homegrown produce. The agricultural risk assessment therefore includes livestock that have been fed crops grown on irrigated lands, and direct exposure to water and soils irrigated with surface water for livestock. Estimated tissue concentrations from livestock were calculated in this evaluation and used to refine human health water quality standards by estimated contribution of livestock ingestion to total human exposure. The calculated results are based on total metal content of water (not just dissolved concentrations). While water quality standards are often based on dissolved concentrations of metals, total metal content represents a more likely exposure through agricultural use of water to account for the possibility of unfiltered water being used for irrigation and livestock watering. Ambient water quality criteria (AWQC) presented here address toxicity to crops through irrigation, toxicity to livestock through water ingestion and crop/pasture consumption, and toxicity to humans through ingestion of water and consumption of homegrown produce and meat products.

Table E-1. Summary of identified thresholds for 7 metals of concern in feed, water and soils, across a range of livestock and wildlife

Metal	Feed-stuffs	Water	Soil
Arsenic	2-250 mg As/kg feed (or higher*)	0.5-2.9 mg As/l	419 431 mg As/kg soil
Cadmium	1-160 mg Cd/kg feed	4.1-41.3 mg Cd/l	20-23 mg Cd/kg soil
Copper	170-182 mg Cu/kg feed	65-85 mg Cu/l	281-413 mg Cu/kg soil (or as high as 2,000 mg Cu/kg soil)
Iron	500-1,200 mg Fe/kg feed		
Lead	100-200 mg Pb/kg feed (up to 730 mg Pb/kg feed)	34-340 mg Pb/l	1,127-1,146 mg Pb/kg soil (upper safe levels, not necessarily a threshold of concern)
Nickel	>100mg Ni/kg feed; 360-720 mg Ni/kg feed	171-340 mg Ni/l	
Zinc	500 - 1,000 mg Zn/kg feed	50 mg/l (a safe level, not a threshold of concern)	1,000-3,600 mg Zn/kg soil

As shown on Table E-2, U.S. EPA's 1972 criteria for metals and crop and livestock protection are generally below those calculated using a risk-based approach and realistic exposure information for metals. This is due in part to the fact that the 1972 criteria were apparently based on maximum concentrations reported for soils as well as conservative assumptions regarding exposure.

Overall, the water ingestion pathway was the dominant exposure pathway for humans and livestock. The combined human health-based AWQC are presented in *Table E-3* Two results are presented for As; the AWQC values associated with carcinogenic effect of As are lower than those based on noncarcinogenic hazard. Carcinogenic endpoints were assessed only for humans.

Several uncertainties are identified regarding the water quality standards estimated in Tables E-2 and E-3. The human health and agricultural WQC were based on domestic and agricultural water uses for the Navajo Nation, and upper-bound exposure parameters were chosen. This was a necessary assumption to address the uncertainty in the range of exposures. This assumption is associated with uncertainty that is intended to be protective of all ages. There is uncertainty in the estimate of soil concentrations from the use of water for irrigation. Deeper tillage may act to decrease concentrations, as deposited metals would be dispersed through a larger soil column. Further, decreases in metals through runoff, plant uptake, addition of soil amendments, or other means were not factored into the estimates. In addition, the water usage may be over- or underestimated and could be better assessed if surface water withdrawal rates are known, as well as the acreage that is irrigated by surface water drawn from the river. Background soil concentrations are also not addressed.

The toxicity reference values were based on tolerable levels in feed for cattle and sheep. The body weight and feed intake rates used to assess exposures are based on generally accepted values for sheep and cattle. However, these may not bound exposure parameters for cattle or sheep in New Mexico due to different ranching practices, or temperature and climate conditions, as well as breed size and water/feed intake rates.

Rates for human consumption of homegrown produce and meat are also associated with uncertainty. U.S. EPA consumption rates for homegrown meat and produce were used, and consumption may be less than this if other sources of food items are more commonly used. Conversely, if all food consumed is homegrown, then these intake rates may not fully capture Navajo exposures and they may lead to an underestimate of risk.

It should be noted that this analysis estimates the incremental contribution of surface water to total exposures and excludes any contribution ambient concentrations to crop, livestock, or human exposure.

Table E-2. Summary of risk-based water quality standards (mg/L) for crops and livestock

Metal	Crops (this study)	U.S. EPA 1972 Criteria crops	Cattle (this study)	Sheep (this study)	U.S. EPA 1972 Criteria livestock
Aluminum	9430		190	170	
Antimony	943		1.8	1.6	
Arsenic	3400	0.10	7.2	4.5	0.2
Barium	94000		75	65	
Beryllium	1900		2.8	2.5	
Cadmium	6000	0.05	2.3	1.5	50
Chromium	190		24	15	44 44
Cobalt	2450		6	3.8	
Copper	13000	5.0	9.8	2.2	0.5
Iron	0.181	20.0	120	75	2.0
Lead	22500	10.0	23	15	0.05
Manganese	41000		490	300	
Mercury	56		0.45	0.3	
Molybdenum	380	~~	1.2	0.75	
Nickel	7200	20.0	24	15	
Selenium	98		1.2	0.75	
Silver	105000		1100	1000	
Thallium	190		9	8	
Vanadium	380		12	7.5	
Zinc	30000	10.0	120	45	25.0

Tetra Tech, Inc. xii

Table E-3. Summary of risk-based metal water quality standards for protection of human health

		Risk-based AWQC from Human Exposure Pathways		
Metal	Water Ingestion AWQC (µg/L)	Consumption of Homegrown Produce - AdjustedAWQCs (µg/L)	Consumption of Homegrown Meat Products - Adjusted AWQC (µg/L)	Combined AWQC (ug/L)
Aluminum	15000	4300000	5248858239	14994
Antimony	6	370	695890	5.9
Arsenic (non-cancer)	5	1400	262613	4.49
Arsenic (cancer) (1)	0.02	0.026	5	0.0113
Barium	3000	370000	2334261641	2975.9
Beryllium	30	37000	3501543	30
Cadmium	8	185	3182694	7.21
Chromium	22500	9200000	477483469	22444
Cobalt	5	1200	26261	4.48
Copper	600	4400	7002248	528
Iron	10500	19500000	61277111	10492
Lead	15	15	15	5.0
Manganese	2100	77000	612724895	2044
Mercury	5	42	2100	4.06
Molybdenum	75	2300	1458869	72.6
Nickel	300	9250	5835815	290.6
Selenium	75	5500	583588	74
Silver	75	1400	2840872	71.2
Thallium ⁽²⁾	0.15	690	438	0.15
Vanadium	75	46000	3501548	74.9
Zinc	4500	9200	5250630	3019.8

⁽¹⁾ AWQC for ingestion of homegrown meat products for arsenic (carcinogenic) was adjusted downward by a factor of 32000 to account for risk above 1E-6.

Tetra Tech, Inc. xiii

⁽²⁾ AWQC for ingestion of homegrown meat products for thallium was adjusted downward by a factor of 25.1 to account for hazard index above 1

1. Introduction

The Clear Water Act specifies two broad classes of waterbody uses: those that directly conform to the main goals of the Act – "fishable and swimmable" uses (under section 304(a) of the Act) and those that are not directly related to ecological integrity and human safety. The latter include waterbody uses such as water supply for crops livestock, industrial consumption, and navigation.

United States Environmental Protection Agency (U.S. EPA) is required by the Act to develop water quality standards to protect 304(a) uses such as aquatic life, drinking water, and recreation (primary contact such as swimming). U.S. EPA is not required to develop water quality standards for the protection of crops and livestock. Therefore, many States and Tribes have identified their own water quality standards for certain types of common pollutants (see Section 2) to protect crops and livestock from waterborne pollutants.

The science behind development of safe thresholds of pollutants to protect crops and livestock has mostly resided with the United States Department of Agriculture (USDA). This Department has, as part of their mission, provided information to farmers and others regarding safe levels of certain constituents in water and soil for the continued production of crops and livestock for eventual human use. As discussed in Sections 2 and 3, this information generally addressed acute potential effects of constituents that have been encountered in various regions of the U.S. due to natural geologic or soil conditions. Constituents such as salts or dissolved solids, for example, have been included by states and Tribes in their water quality standards for agricultural uses due to their prevalence in surface waters in many areas of the United States. Some constituents, such as metals, have been less studied and represent a data gap in terms of having science—based standards that are appropriate for the protection of crops and livestock.

Development of appropriate ambient water quality criteria (AWQC) for crop and livestock protection becomes more complex when considering constituents, including metals, that may bioaccumulate and be transported through the food chain. In these instances, uptake of water is only one of the potential pathways by which livestock may accumulate metals; ingestion of crops that have been exposed to metals is another pathway by which livestock can be exposed to elevated metal concentrations in water or soil. AWQC typically do not account for multiple exposure pathways and this can result in a recommended concentration that does not adequately protect human health. The definition of "criteria" as used in this Report is consistent with U.S. EPA *Water Quality Criteria 1972* (NAS & NAE 1972) and is meant as "the scientific data evaluated to derive recommendations for characteristics of water for specific uses." As a first step in the development of standards it is essential to establish scientifically based recommendations for protection of crops, protection of livestock, and protection of human health. Note that the term "standard" is used in this report to indicate regulatory directives on allowable concentrations of metals in water.

The Navajo Nation contracted Tetra Tech, Inc. to evaluate current water quality metal standards for protection of crops, livestock, and humans consuming crops and livestock, the rationale behind those standards if any, and development of science-based standards where feasible. This Report presents and discusses these objectives for several metals of concern that were discharged during the Gold King Mine spill in August 2015 into the Animas River, Colorado. That spill, which contained elevated concentrations of As, Cd, Cu, Fe, PB, Ni, Zn, and other metals, continued down the San Juan River,

through Navajo Nation lands, and into Lake Powell downstream. Using comprehensive literature reviews and a human health risk assessment framework, this Report derives potential water quality standards for those metals for protection of crops, livestock, and humans that consume crop and livestock products, where sufficient information exists.

This Report is organized as follows:

Section 2 summarizes current regulatory practices regarding water quality standards for protection of crops and livestock, their scientific basis if any, and water quality standards that have been adopted by States or Tribes.

Section 3 discusses the science of metal bioaccumulation in crop plants and livestock from water and soil and what is known regarding bioaccumulation factors and biomagnification potential through the food chain for metals of concern. This section identifies those metals of highest concern for protection of crops and livestock based on comprehensive literature reviews.

Section 4 summarizes relevant information regarding U.S. EPA's derivation of water quality standards for human health in general. This section also presents laboratory toxicity analyses that examined growth of crop species of interest in several different soil samples and indicator species survival and growth in several river sediment samples provided by the Navajo Nation. These results, along with concurrent metal risk assessment analyses conducted by Tetra Tech for Utah DEQ and fish tissue metal analyses for the San Juan River and the Navajo Nation, are presented to provide context in terms of water and soil concentrations encountered due to the mine spill.

Sections 5 and 6 discuss the toxicological information regarding metals of concern and human health and, where feasible, calculates risk to human health from consumption of water, plants, and livestock products exposed to metals. Information compiled in Sections 2 and 3 are used along with Navajo Nation-specific exposure factors to determine acceptable levels of different metals in water based on potential hazard to human, livestock, or crop health. Where feasible, we present safe thresholds for each metal as a maximum criterion or a range of concentrations depending on the quality and extent of toxicological information.

Section 7 provides summary and conclusions of the report.

2. Current Regulatory Practices Regarding Water Quality Standards for Protection of Crops and Livestock

This section summarizes current regulatory practices regarding water quality standards for protection of crops and livestock, their scientific basis, and water quality standards that have been adopted by states and Tribes. A compilation of state and tribal agricultural water quality standards is provided in Tables 2-1 and 2-2 (see Tables A-1 and A-2, Appendix), respectively.

2.1. States Agricultural Standards

As shown in Table 2-1, consistent with Section 101(a) of the CWA (40 CFR 131.6(a)), most states include general livestock watering, or crop irrigation as designated uses (which some states refer to as agricultural uses). Four states (including the District of Columbia) did not specifically list an agricultural designated use. All states have numerical metals standards; however, most of these are aquatic life or human health ambient water quality standards. As detailed in Table A-1 (Appendix) and summarized in Table 2-1, eleven states and two Water Quality Control Boards in California list numeric metals standards for agricultural uses in their water quality standards. Two states (Idaho and Washington) reference agricultural water quality standards for metals but do not provide specific values for these uses in their standards, as described further below.

Table 2-1. States with numeric agricultural water quality standards for metals

State	Numeric Agricultural Water Standards for Metals	
Florida	Some numeric agricultural standards are the same as aquatic life or human health standards for metals. Copper and lead agricultural standards correspond to those listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.	
Ohio	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.	
	Most of the agricultural numeric standards correspond to those listed in U.S.EPA's Water Quality Criteria 1972 (NAS & NAE 1972), with the exception of molybdenum, selenium, and zinc for irrigation. Not all of the NAS & NAE 1972 criteria are listed in these standards. • Molybdenum for irrigation: 1,000 µg/L (rationale for this concentration was not	
New Mexico	 provided) Zinc for irrigation: 25,000 μg/L (rationale for this concentration was not provided; however, this concentration corresponds to the livestock standard from U.S. EPA's Water Quality Criteria 1972 [NAS & NAE 1972]) 	
	 Dissolved selenium for irrigation: 0.13 mg/L (rationale for this concentration was not provided) 	
	 Dissolved selenium for irrigation, in presence of > 500 mg/L SO₄: 0.25 mg/L (rationale for this concentration was not provided) 	
Missouri	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.	

Table 2-1 (continued).

State	Numeric Agricultural Water Standards for Metals
	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), with the exception of cadmium and nickel for livestock. Not all of the NAS & NAE 1972 criteria are listed in these standards.
Kansas	Cadmium for livestock: 20 μg/L (rationale for this concentration was not provided)
	 Nickel for livestock: 500 µg/L (rationale for this concentration was not provided; however, this concentration corresponds to the irrigation standard from the Federal Water Pollution Control Agency's (FWPCA's 1968) Water Quality Criteria.
North Dakota	The agricultural numeric standards correspond to aquatic life standards
Colorado	Most of the agricultural standards matched the NAS & NAE 1972 criteria correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972), with the exception of molybdenum (Raisbeck et al. 2007 was cited for this standard of 300 μg/L [30-day]). Not all of the NAS & NAE 1972 criteria are listed in these standards.
Utah	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.
Arizona	The agricultural numeric standards correspond to the 20-year irrigation standards listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972). Not all of the NAS & NAE 1972 criteria are listed in these standards.
Nevada	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.
Alaska	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.
California's San Francisco Bay Basin (Region 2) Water Quality	The livestock watering numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972) for livestock, with the exception of the livestock criterion for molybdenum. Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.
Control Plan (Basin Plan)	Molybdenum for livestock: 0.5 mg/L (rationale for this concentration was not provided)
California's Water Quality Control Plan for the Central	Most of the agricultural standards correspond to those listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), with the exception of the livestock criterion for molybdenum. Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.
Coastal Basin (Region 3)	Molybdenum for livestock: 0.5 mg/L (rationale for this concentration was not provided)

Although Idaho does not specifically include numeric agricultural standards for metals in its water quality standards¹, it is indicated that water quality standards for agricultural water supplies will

¹ IDAPA 58, Title 01, Chapter 02, 58.01.02 – Water Quality Standards.

generally be satisfied by Idaho's numeric standards for toxic substances for waters designated for aquatic life, recreation, or domestic water supply use. It is further noted in Idaho's water quality standards that U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972) will be used for determining standards when needed to protect a specific agricultural use.

Washington State also does not specifically list numeric agricultural standards for metals in its water quality standards², but references its *Proposed Agricultural Water Supply Criteria Decision Process for Ecology's Proposed Rule*. Washington's proposed agricultural water supply standards for metals are based on two key works—U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972) and the Food and Agriculture Organization of the United Nations' (FAO's) *Water Quality for Agriculture* (Ayers and Westcot 1985).

2.2. Agricultural Water Standards Used by Tribes

As shown in Table 2-2, consistent with Section 101(a) of the CWA (40 CFR 131.6(a)), most tribes found eligible to administer a water quality standards program include general agricultural uses, livestock watering, or irrigation as designated uses. The term "agricultural uses" is not strictly defined and has been interpreted to mean water use for crop irrigation, livestock watering, farm/ranch needs, or landscape irrigation but does not include domestic use. As detailed in Table A-2 (Appendix 1) and summarized in Table 2-2, nineteen tribes include numeric metals standards for agricultural uses in their water quality standards. One tribe (the Bishop Paiute Tribe) references agricultural water quality standards for metals but does not provide specific values for these uses in their standards, as described further below.

Table 2-2. Tribes with numeric agricultural standards for metals

Tribe	Numeric Agricultural Standards for Metals			
Seminole Tribe of Florida	Most numeric agricultural standards are the same as aquatic life standards for metals, with the exception of mercury.			
	 Mercury: 0.02 μg/L (rationale for this concentration was not provided) 			
Pueblo of Acoma	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), with the exception of mercury for livestock and selenium for irrigation and livestock. Not all of the NAS & NAE 1972 criteria are listed in these standards.			
	 Mercury for livestock: 0.012 μg/L (rationale for this concentration was not provided) 			
	 Selenium for irrigation: 0.13 mg/L, 0.25 mg/L (when SO₄ > 500 mg/L) (rationale for this concentration was not provided) 			
	Selenium for livestock: 0.002 mg/L (rationale for this concentration was not provided)			
Pueblo of Isleta	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Crite</i> 1972 (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteriaare liste these standards.			

² Water Quality Standards for Surface Waters of the State of Washington, Chapter 173-201A WAC Amended May 9, 2011, Revised January 2012, Publication no. 06-10-091.

Table 2-2 (continued).

Tribe	Numeric Agricultural Standards for Metals			
Pueblo of Laguna	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.			
	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), with the exception of mercury for livestock and selenium for irrigation and livestock. Not all of the NAS & NAE 1972 criteria are listed in these standards.			
Pueblo of	 Mercury for livestock: 0.012 μg/L (rationale for this concentration was not provided) 			
Nambé	 Selenium for irrigation: 0.13 mg/L, 0.25 mg/L (when SO₄ > 500 mg/L) (rationale for this concentration was not provided) 			
	 Selenium for livestock: Se (total): 0.002 mg/L (rationale for this concentration was not provided) 			
Ohkay Owingeh	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.			
	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), with the exception of mercury for livestock and selenium for irrigation and livestock. Not all of the NAS & NAE 1972 criteria are listed in these standards.			
Picuris Pueblo	 Mercury for livestock: 0.012 μg/L (rationale for this concentration was not provided) 			
Picuris Pueblo	 Selenium for irrigation: 0.13 mg/L, 0.25 mg/L (when SO₄ > 500 mg/L) (rationale for this concentration was not provided) 			
	 Selenium for livestock: Se (total): 0.002 mg/L (rationale for this concentration was not provided) 			
	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972), with the exception of mercury for livestock and selenium for irrigation and livestock. Not all of the NAS & NAE 1972 criteria are listed in these standards.			
Pueblo of	 Mercury for livestock: 0.012 μg/L (rationale for this concentration was not provided) 			
Pojoaque	 Selenium for irrigation: 0.13 mg/L, 0.25 mg/L (when SO₄ > 500 mg/L) (rationale for this concentration was not provided) 			
	 Selenium for livestock: Se (total): 0.002 mg/L (rationale for this concentration was not provided) 			
Pueblo of Sandia	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972), with the exception of molybdenum for irrigation. Not all of the NAS & NAE 1972 criteria are listed in these standards.			
	Molybdenum for irrigation: 1.0 mg/L (rationale for this concentration was not provided)			

Table 2-2 (continued).

Tribe	Numeric Agricultural Standards for Metals
Pueblo of Santa	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972), with the exception of mercury, molybdenum, and selenium. Not all of the NAS & NAE 1972 criteria are listed in these standards.
	Molybdenum for irrigation: 1.0 mg/L (rationale for this concentration was not provided)
Clara	 Dissolved selenium for irrigation: 0.13 mg/L (rationale for this concentration was not provided)
	 Mercury (total) for livestock: 0.012 μg/L (rationale for this concentration was not provided)
	Selenium for livestock: 0.002 mg/L (rationale for this concentration was not provided)
Pueblo of Santa Ana	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972), with the exception of molybdenum for irrigation. Not all of the NAS & NAE 1972 criteria are listed in these standards.
	Molybdenum for irrigation: 1.0 mg/L (rationale for this concentration was not provided)
	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972), with the exception of molybdenum and selenium for irrigation. Not all of the NAS & NAE 1972 criteria are listed in these standards.
Pueblo of Taos	 Molybdenum for irrigation: 1,000 μg/L (rationale for this concentration was not provided)
	 Selenium for irrigation: 130 μg/L (rationale for this concentration was not provided)
	 Selenium for irrigation: 250 μg/L (when SO₄ > 500 mg/L) (rationale for this concentration was not provided)
	Most of the agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972), with the exception of mercury for livestock and selenium for irrigation and livestock. Not all of the NAS & NAE 1972 criteria are listed in these standards.
Pueblo of Tesuque	 Mercury (total) for livestock: 0.012 μg/L (rationale for this concentration was not provided)
resuque	 Selenium for irrigation: 0.13 mg/L (in the presence of <500 mg/L of SO₄) (rationale for this concentration was not provided)
	Selenium for livestock: 0.002 mg/L (rationale for this concentration was not provided)
Ute Mountain Ute Tribe	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.
	The Food and Agriculture Organization of the United Nations' (FAO's) Water Quality for Agriculture (Ayers and Westcot 1985) is cited.
Hopi Tribe	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.
	Note that the irrigation standards listed correspond to the 20-year values listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972).

Table 2-2 (continued).

Tribe	Numeric Agricultural Standards for Metals			
Hualapai Tribe	The agricultural numeric standardscorrespond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972). Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.			
	Note that the irrigation standards listed correspond to the 20-year values listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972).			
Navajo Nation	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972) with the exception of molybdenum. Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.			
	Molybdenum for irrigation: 1.0 mg/L (rationale for this concentration was not provided)			
	Note that the irrigation standards listed correspond to the 20-year values listed in U.S. EPA's <i>Water Quality Criteria 1972</i> (NAS & NAE 1972).			
Pyramid Lake Paiute Tribe	The agricultural numeric standards correspond to those listed in U.S. EPA's <i>Water Quality Criteria</i> 1972 (NAS & NAE 1972) with the exception of cobalt for livestock. Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.			
	 Cobalt for livestock: 5,000 μg/L (rationale for this concentration was not provided) 			
White Mountain Apache Tribe of the Fort Apache	The agricultural numeric standards correspond to those listed in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972) with the exception of selenium for irrigation and livestock. Not all of the U.S. EPA's (NAS & NAE 1972) agricultural criteria are listed in these standards.			
Indian	Selenium for irrigation: 0.13 mg/L (rationale for this concentration was not provided)			
Reservation	Selenium for livestock: 0.002 mg/L (rationale for this concentration was not provided)			

Although the Bishop Paiute Tribe does not specifically list numeric agricultural standards for metals in its water quality standards³, it is indicated that the tribe will refer to water quality goals and recommendations from sources such as FAO's *Water Quality for Agriculture* (Ayers and Westcot 1985).

2.3. Sources of Information

As described above, most states and tribes that have numeric standards for agricultural designated uses cite or use U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972). The crop irrigation and livestock numeric standards for metals from U.S. EPA's *Water Quality Criteria 1972* and other sources cited in state and tribal numeric standards are compiled in Tables A-3 and A-4 (Appendix). All of the Ayers & Westcot (1976, 1985) values and most of the Hicks (2002) values for livestock watering for metals are the same as those listed in NAS & NAE (1972). Although Pick (2011) cites the NAS & NAE (1972) source, Pick (2011) lists a lower value for As, and it lists values for barium (Ba), Fe, Mg, and manganese (Mn) that were not included in NAS & NAE (1972). Most of the Looper et al. (2002) livestock watering standards values for metals are different than those provided in NAS & NAE (1972). Most of the FWPCA (1968) livestock water standards values for metals are larger than the corresponding ones in NAS & NAE (1972).

³ Bishop Paiute Tribe Water Quality Control Plan.

As shown in Table A-4 (Appendix), all of the Ayers & Westcot (1976, 1985), Pick (2011), Fipps (2003), and Hicks (2002) crop irrigation standards values for metals and most of the U.S. EPA (1976) and Colorado Department of Public Health and Environment (2018) crop irrigation standards values for metals are the same as those listed in NAS & NAE (1972). Most of the FWCPA (1968) crop irrigation standards values for metals are different from the one listed in NAS & NAE (1972).

It should be noted that NAS & NAE (1972) provide the most detailed information on the rationale used for determining livestock watering and crop irrigation standards. In U.S. EPA's 1994 compilation of water quality standards, the NAS & NAE (1972) and FWPCA (1968) references were cited; however, U.S. EPA indicated that the standards developed for human health and aquatic life are usually sufficient for protecting these uses. U.S. EPA (1994) further noted that states and tribes can develop standards specifically designed to protect agricultural uses.

2.4. Scientific Basis of Numeric Values

Although some metals are essential for plant growth (e.g., Fe, Mn, Mo, Zn), excess amounts of metals in irrigation water can cause growth reductions and accumulate in plant tissues (Ayers & Westcot 1976, 1985). Many metals from irrigation water are fixed and accumulate in soils, so repeated applications of amounts in excess of plant needs could eventually contaminate soils, causing the soils to become nonproductive or making the agricultural products unusable. Based on studies of wastewater irrigation, it has been shown that 85% of the applied metals accumulate in the soil, with the largest accumulation in the first few centimeters of soil from the surface (Ayers & Westcot 1976, 1985).

As described in Ayers & Westcot (1976, 1985), the safe concentration of metals for livestock watering is dependent on the amount of water consumed per day by the animal, as well as the animal's weight. In cases where there is no alternative to using water of poor or marginal quality, Ayers & Westcot (1985) indicated that efforts toward minimizing the effects on animal health should be implemented, including the following practices:

- "provide drains or overflows on troughs and tanks to flush them occasionally. This will prevent poor water concentrating further by evaporation;
- provide dilution water if available;
- increase rainfall collection for dilution purposes;
- reduce evaporation losses (various methods available);
- control high water-using vegetation along streams and around holding ponds, or spring sources of water;
- provide settling basins to remove sediment."

As mentioned above, most states and tribes that have numeric standards for agricultural designated uses cite or use U.S. EPA's *Water Quality Criteria* 1972 (NAS & NAE 1972). It should be noted that standards calculations were not provided in U.S. EPA's *Water Quality Criteria* 1972 (NAS & NAE 1972) for livestock watering or crop irrigation. A summary of available information to support the numeric agricultural standards recommendations provided in U.S. EPA's *Water Quality Criteria* 1972 (NAS & NAE 1972) (and compiled in Tables A-3 and A-4 (Appendix) is provided below.

2.4.1. Metals of Focus in this Report

Arsenic (As)

Livestock Watering: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), the acute toxicity of inorganic As for farm animals is 0.05–1.0 g/animal for poultry; 0.5–1.0 g/animal for swine; 10.0–15.0 g/animal for sheep, goats, and horses; and 15–30 g/animal for cattle. During the time these standards were developed, the permissible levels of As in muscle meats was 0.5 ppm; 1.0 ppm in edible meat by-products; and 0.5 ppm in eggs. It was indicated in NAS & NAE (1972) that natural waters seldom contain more than 0.2 mg/L.

U.S. EPA Recommended Criterion: 0.2 mg/L

Additional Research Findings on As: The toxic oral dose of sodium arsenite is 6.5 mg/kg of body weight for horses, 7.5 mg/kg of body weight for cattle, 11 mg/kg of body weight for sheep, and 2 mg/kg of body weight for pigs (Blood et al. 1992, and NRC 2001 in Mandal 2017; and Blood et al. 1992 in Bampidis et al. 2013). Levels of 0.019 mg/kg/day and 0.191 mg/kg/day of As (as arsenite) in feed were the no observed adverse effect level (NOAEL) and lowest observed adverse effect level (LOAEL), respectively, in white-tailed deer (Sample et al. 1996). Levels of 0.292 mg/L and 2.921 mg/L of As (as arsenite) in water were the NOAEL and LOAEL, respectively, in white-tailed deer (Sample et al. 1996). A maximum safe level of 2 mg/kg (complete diet) in livestock has been recommended by the European Union (Henja et al. 2018).

Crop Irrigation: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), levels of 0.5 mg/L arsenic in nutrient solutions reduced crop growth. Assuming that the added As is mixed with the surface six inches of soil and that it is in the arsenate form, it was indicated in NAS & NAE (1972) that the amounts that would produce toxicity for sensitive plants varied from 10 lb/acre for sandy soils to 300 lb/acre for clay soils. NAS & NAE (1972) indicated that the possible leaching of As in sandy soils and reversing to less soluble and less toxic forms of As over time would allow for higher amounts to cause toxicity (i.e., 200 lb/acre in sandy soils and 600 lb/acre in clay soils) over many years. The standards were based on the assumption that 3-acre feet of water are used per acre per year (1 mg/L equals 2.71 lb/acre foot of water), and that the added As becomes mixed in a 6-inch layer of soil. NAS & NAE (1972) indicated that removal of small amounts in harvested crops provides an additional safety factor.

U.S. EPA Recommended Criterion: 0.10 mg/L As for continuous use on all soils; 2 mg/L for use up to 20 years on fine textured neutral to alkaline soils.

Cadmium (Cd)

Livestock Watering: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), a recommended limit of <100 μ g/L should be used for drinking waters, based on toxicity observed in rats and dogs, and accumulation and retention of Cd in the liver and kidney. Reduced longevity in rats and mice was observed at a level of 5 mg/L in drinking water. It was indicated in NAS & NAE (1972) that cows are efficient at keeping Cd out of their milk and that that meat seemed well protected against Cd accumulation.

U.S. EPA Recommended Criterion: 50 μg/L should allow for an adequate margin of safety for livestock.

Additional Research Findings on Cd: Cd in feed levels ranging from 5 to 30 mg/kg interferes with Cu and Zn absorption, resulting in symptoms usually associated with deficiencies in these elements in most animals (Bampidis et al. 2013). Cd feed levels > 30 mg/kg for ruminants causes anorexia, reduced growth, decreased milk production, and abortion (Bampidis et al. 2013). Cd feed levels of 18 mg/kg for calves, 60 mg/kg for sheep, and 50 mg/kg for pigs causes chronic Cd intoxication (Bampidis et al. 2013). Levels of 0.271 mg/kg/day and 2.706 mg/kg/day of Cd (as cadmium chloride) in feed were the no

observed adverse effect level (NOAEL) and lowest observed adverse effect level (LOAEL), respectively, in white-tailed deer (Sample et al. 1996). Levels of 4.132 mg/L and 41.323 mg/L of Cd (as cadmium chloride) in water were the NOAEL and LOAEL, respectively, in white-tailed deer (Sample et al. 1996).

Crop Irrigation: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), decreases in crop yields were observed at concentrations ranging from 0.10 mg/L to 1.0 mg/L Cd in nutrient solutions.

U.S. EPA Recommended Criterion: 0.010 mg/L for continuous use on all soils; 0.050 mg/L on neutral and alkaline fine textured soils for a 20-year period.

Copper (Cu)

Livestock Watering: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), Cu is an essential trace element. Diet requirements are 4 ppm in for chicks and turkey poults; 4 ppm in beef cattle on rations low in Mo and sulfur, with double or triple this requirement when these elements are high; 5 ppm in pregnant and lactating ewes and their lambs; and 6 ppm for swine. In sheep, 25 ppm Cu in the diet was considered toxic, with approximately 9 mg/animal/day considered to be a safe tolerance level. Other livestock tolerate higher concentrations of Cu in their diet. As described in NAS & NAE (1972), Cu does not appear to accumulate to high levels in muscle tissues.

U.S. EPA Recommended Criterion: 0.5 mg/L

Additional Research Findings on Cu: Concentrations in feed over a 2-year period of 37.5 mg/kg and 22.6 mg/kg Cu for lactating and dry cows, respectively, caused sublethal effects (e.g., acute anorexia, weakness, mental dullness, poor pupillary light reflexes, jaundice, chocolate-colored blood) and lethal effects in 14% of the herd (Bradley 1993). Maximum safe levels in feed of 20 mg/kg in Jersey cows, 15 mg/kg in milking cows, 35 mg/kg in bovines other than milking cows, 170 mg/kg in 12-week old pigs, and 25 mg/kg in pigs > 12 weeks old have been recommended by the European Union (Henja et al. 2018).

Crop Irrigation: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), Cu concentrations ranging from 0.1 to 1.0 mg/L in nutrient solutions are toxic to many crops. Toxicity of crops in soils that had accumulated 800 lb/acre was observed. Cu toxicity in soils can be reduced by using lime (if the soil is acid), applying phosphate fertilizer, and applying Fe salts. A concentration of 0.20 mg/L in water used at a rate of 3-acre feet of water per year would add 160 pounds of Cu in 100 years, and a concentration of 5.0 mg/L in water used at a rate of 3 acre feet per year would add 800 pounds of Cu in 20 years.

U.S. EPA Recommended Criterion: 0.20 mg/L Cu is recommended for continuous use on all soils; on neutral and alkaline fine textured soils for use over a 20-year period, a maximum concentration of 5.0 mg/L is recommended.

Iron (Fe)

Livestock Watering: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), Fe salt concentrations of 9,000 mg/kg diet caused a phosphorus deficiency in chicks. Levels of Fe ranging from 4,000 to 5,000 mg/kg in the diet caused phosphorus deficiency in weanling pigs. No recommended criteria were provided; however, a few parts per million of Fe can cause clogging of lines to stock watering equipment or an undesirable staining and deposit on the equipment itself.

Additional Research Findings on Fe: Looper et al. (2002) suggested that 2 ppm of Fe in water should be used as an upper limit for cattle in Oklahoma. Levels of 30,000 mg/day of Fe in feed were shown to cause reduction in body weight and to impact milk yield in cows (Coup and Campbell 1964). Levels of 500 ppm Fe in feed caused secondary Cu deficiency and possible secondary deficiency of Se and vitamin E in cattle (Weiss 2008, 2010). Maximum safe levels in feed of 250 mg/day in weanling pigs, 750 mg/day in non-weanling pigs, and 750 mg/day for cattle have been recommended by the European Union (Henja et al. 2018).

Crop Irrigation: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), Fe is unlikely to cause toxicity to plants because it is insoluble in aerated soils at pH levels at which plants grow well. Reduction in quality of cigar wrapper tobacco was observed at concentrations of 5 mg/L Fe in irrigation water, due to the precipitation of Fe oxides on leaves.

U.S. EPA Recommended Criterion: 5.0 mg/L is recommended for continuous use on all soils; 20 mg/L is recommended on neutral to alkaline soils for a 20-year period. In addition, the use of waters with large concentrations of suspended freshly precipitated Fe oxides and hydroxides is not recommended, because these materials also increase the fixation of phosphorous and Mo.

Lead (Pb)

Livestock Watering: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), a daily intake of 6-7 mg Pb /kg of body weight was thought to cause toxicity to cattle. Horses are more sensitive to Pb toxicosis than sheep and cattle. There has been evidence of Pb accumulating in tissues and being transferred to milk at levels that could be toxic to humans (see Sections 3 and 5). Mice and rats were shown to be more susceptible to infections when exposed to sublethal Pb concentrations (e.g., 5 mg/L in drinking water). As described in NAS & NAE (1972), U.S. lake and river waters usually contain < 0.5 mg/L Pb.

U.S. EPA Recommended Criterion: 0.1mg/L

Additional Research Findings on Pb: Pb levels in feed ranging from 400 to 600 mg/kg and 600 to 800 mg/kg cause acute toxicity in young cattle and adult cattle, respectively (Radostits et al. 2002 in Reis et al. 2010). Pb levels in feed ranging from 6 to 7 mg/kg of body weight cause chronic toxicity in cattle (Radostits et al. 2002 in Reis et al. 2010). Pb levels in feed of 100 mg/kg of body weight, 33 to 66 mg/kg of body weight, 4.5 mg/kg of body weight, and 400 mg/kg of body weight cause chronic toxicity in horses, pigs, sheep, and goats, respectively (Radostits et al. 2002 in Reis et al. 2010). Levels of 2.24 mg/kg/day and 22.44 mg/kg/day of I Pb (as lead acetate) in feed were the no NOAEL and LOAEL, respectively, in white-tailed deer (Sample et al. 1996). Levels of 32.47 mg/L and 342.72 mg/L of Pb (as lead acetate) in water were the NOAEL and LOAEL, respectively, in white-tailed deer (Sample et al. 1996). A maximum safe level in feed of 5 mg/kg for livestock has been recommended by the European Union (Henja et al. 2018).

Crop Irrigation: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), lead nitrate concentrations of 25 mg/L caused toxicity to oat and tomato plants, and 10 mg/L lead nitrate caused reduced root growth in bean plants. Soluble Pb concentrations in soil range from approximately 0.05 to 5.0 mg/kg; therefore, little toxicity to crops would be expected at these concentrations.

U.S. EPA Recommended Criterion: 5.0 mg/L for continuous use on all soils; 10 mg/L for a 20-year period on neutral and alkaline fine textured soils.

Nickel (Ni)

Livestock Watering: As shown in Table 2-1, livestock watering standards for Ni based on protection of animal health or subsequent consumption of animal products by humans was not provided in NAS & NAE (1972).

Additional Research Findings on Ni: Looper et al. (2002) suggested that 0.25 ppm of Ni in water should be used as an upper limit for cattle in Oklahoma. A level of 1.2 ppm Ni (as nickel sulfate) in feed was found to cause tremors, paresis, and mortality in mallard ducklings (Samal and Mishra 2011). Levels of 11.22 mg/kg/day and 22.44 mg/kg/day of Ni (as nickel sulfate hexahydrate) in feed were the no observed adverse effect level (NOAEL) and lowest observed adverse effect level (LOAEL), respectively, in white-tailed deer (Sample et al. 1996). Levels of 171.36 mg/L and 342.72 mg/L of Ni (as nickel sulfate hexahydrate) in water were the NOAEL and LOAEL, respectively, in white-tailed deer (Sample et al. 1996).

Crop Irrigation: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), Ni concentrations ranging from 0.5 to 1.0 mg/L in sand and solution cultures are toxic to a number of plants. Ni was found to be toxic to corn at 10 mg/L and no toxicity was observed in tobacco plants at 30 mg/L.

U.S. EPA Recommended Criterion: 0.2 mg/L for continued uses on all soils; 2.0 mg/L for neutral fine textured soils for a period up to 20 years.

Zinc (Zn)

Livestock Watering: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), Zn is a dietary requirement of all poultry and livestock, with 70 mg/kg of diet recommended for poults up to 8 weeks, and 70 mg/kg of diet for chicks up to 8 weeks. Zn deficiencies were reported in cattle grazing on forage with Zn concentrations between 18 and 83 ppm. Sheep require 30 ppm in diet for maximum growth. Chickens showed reduced water consumption, egg production, and body weight when exposed to 2,320 mg/L of Zn in water. Levels of >500 mg/kg in diet cause toxicity in ruminants. Swine have tolerated 1,000 ppm dietary Zn. Bioaccumulation of Zn in animal tissues was not high and tissue levels fell off rapidly after Zn dosing was stopped. As described in NAS & NAE (1972), most U.S. surface waters contain < 0.05 mg/L, but it has been detected at concentrations as high as 50 mg/L near areas where it is mined.

U.S. EPA Recommended Criterion: 25 mg/L

Additional Research Findings on Zn: A level of 500 mg/kg in feed is considered to be safe for steer/heifers, while a level of 900 mg/kg in feed causes sublethal impacts in steers/heifers, including reduced weight gain and lower feeding efficiency (EC 2003). Levels of 3,000 to 7,300 mg/kg Zn in dry weight feed have caused mortality in calves (Wentink et al. 1985). Maximum safe levels in feed of 150 mg/kg in pigs and 100 mg/kg in cattle have been recommended by the European Union (Henja et al. 2018).

Crop Irrigation: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), Zn in concentrations of 16 to 32 mg/L caused Fe deficiencies in sugar beets. Zn concentrations of 0.4 mg/L to

1.6 mg/L have killed soybeans. Liming acid soil has been shown to reduces Zn toxicity to plants. NAS & NAE (1972) indicated that toxicity of added Zn is highest in clay and peat soils, and lowest in sands.

U.S. EPA Recommended Criterion: 2.0 mg/L, assuming adequate use of liming materials to keep pH values high (\geq 6). For a 20-year period on netural and alkaline soils the recommended maximum is 10 mg/L. On fine textured calcareous soils and on organic soils, the concentrations can exceed this limit by a factor of two or three with low probability of toxicities in a 20-year period.

2.4.2. Other Metals

Aluminum (Al)

Livestock Watering: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), there is no evidence that Al is essential for animal growth and very little Al has been detected in animal tissues. A level of 4,000 mg/kg Al in the diet was shown to cause phosphorus deficiency in chicks. Al in livestock waters was not expected to cause problems, except under unusual conditions with acid waters.

U.S. EPA Recommended Criterion: 5 mg/L

Crop Irrigation: All has been recognized as one of the main causes of nonproductivity in acid soils. Toxicity and reduced growth in plants has been observed at Al concentrations of 1 mg/L and 0.1 mg/L Al in nutrient solutions. Most irrigated soils are naturally alkaline, and many are buffered with calcium carbonate, and therefore have great capacities to precipitate soluble Al and to prevent its toxicity to plants. It has been recommended that acidic soils (pH<5.5) be treated with limestone to reduce the toxicity of Al (NAS & NAE 1972). It was estimated in NAS & NAE (1972) that at irrigation rates of 3-acre feet of water/year, 11.5 tons per acre calcium carbonate would be needed for the 5 mg/L Al concentration for 100 years, and 9 tons/acre calcium carbonate equivalent would be needed for the 20 mg/L Al concentration for 20 years.

U.S. EPA Recommended Criterion: 5.0 mg/L Al for continuous use on all soils; 20 mg/L for use on fine textured neutral to alkaline soils over a period of 20 years.

Beryllium (Be)

Livestock Watering: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), laboratory rats survived 2 years on a diet which supplied about 18 mg/kg Be daily. If these data are transposed to cattle, it would be estimated that a cow could drink 250 gallons of water containing 6,000 mg/L Be, without harm. No livestock watering standards were recommended for Be by U.S. EPA (NAS & NAE 1972), and there are still insufficient data available to develop a recommended livestock watering criterion

Crop Irrigation: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), concentrations of Be ranging from 0.5 mg/L to 5 mg/L in nutrient solutions caused toxicity or reduced growth in various crops. Given a recommended Be concentration in irrigation water of 0.1 mg/L (see Table A-4), approximately 80 pounds of Be would be added in 100 years (NAS & NAE 1972) 0.1 mg/L (or in 20 years at a concentration of 0.5 mg/L) at an average irrigation rate of 3-acre feet of water per acre per year.

U.S. EPA Recommended Criterion: 0.10 mg/L Be for continuous use on all soils; 0.50 mg/L Be for use on neutral to alkaline fine textured soils for a 20-year period (as recommended by U.S. EPA and in multiple state and tribal standards, Table A-4).

Chromium (Cr)

Livestock Watering: Even in its most soluble forms, Cr is not readily absorbed by animals nor does it appear to concentrate in mammalian tissues or increase in concentration in mammalian tissues with age (NAS & NAE 1972). The maximum nontoxic level in rats, based on growth effects, was 500 mg/L in drinking water. Some beneficial effects were observed in rats and mice fed a low Cr diet and given drinking water containing 5 mg/L Cr III over a lifetime. Levels of 100 ppm Cr VI in chick diets had no effect on the performance of the birds over a 21-day period. As described in NAS & NAE (1972), the maximum and average concentrations of chromium detected were 0.1 mg/L and 0.001 mg/L, respectively, in lake and river water.

U.S. EPA Recommended Criterion 1.0 mg/L should allow for an adequate margin of safety for livestock (as recommended by U.S. EPA and in multiple state and tribal standards, Table A-3).

Crop Irrigation: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), Cr concentrations ranging between 0.5 mg/L in water cultures and 10 mg/kg in soil cultures reduced crop growth, with Fe deficiencies observed in several different crops. Because little is known about the accumulation of Cr in soils in relation to its toxicity, a concentration of less than 1.0 mg/L in irrigation waters is desirable. At a concentration of 1.0 mg/L, using 3-acre feet water/acre/yr, more than 80 lb of Cr would be added per acre in 100 years. Using a concentration of 1.0 mg/L for a period of 20 years and applying water at the same rate, approximately 160 pounds of Cr would be added to the soil.

U.S. EPA Recommended Criterion 0.1 mg/L is recommended for continuous use on all soils;1.0 mg/L on neutral and alkaline fine textured soils for a 20-year period is recommended (as recommended by U.S. EPA and in multiple state and tribal standards, Table A-4).

Cobalt (Co)

Livestock Watering: Co is part of the vitamin B12 molecule and is therefore an essential element (NAS & NAE 1972). When administered to nonruminants in amounts much higher those present in food and feeds, Co induced polycythemia. Approximately 1.1 mg/kg of body weight administered daily to calves prior to rumen development caused depression of appetite and loss of weight. As described in NAS & NAE (1972), most U.S. surface waters contained less than 0.001 mg/L of Co.

U.S. EPA Recommended Criterion: 1.0 mg/L offers a satisfactory margin of safety (as recommended by U.S. EPA and in multiple state and tribal standards, Table A-3).

Crop Irrigation: Co concentrations of 0.1 mg/L were found to be toxic to tomato plants and 5 mg/L were highly toxic to oats (NAS & NAE 1972). In neutral to alkaline pH soils, its reaction with soil increases with time; therefore, 5.0 mg/L might be tolerated in fine textured and neutral soils when added in small amounts annually.

U.S. EPA Recommended Criterion: 0.050 mg/L for continuous use on all soils; 5.0 mg/L for neutral and alkaline fine-textured soils for a 20-year period (as recommended by U.S. EPA and in multiple state and tribal standards, Table A-4).

Manganese (Mn)

Livestock Watering: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), it is generally found at low levels in natural waters as manganous salts that are precipitated in the presence of air as manganic oxide. Although it can be toxic at high levels in feed, it is unlikely that it would be

found at toxic levels in natural waters. No standards were recommended; however, a few milligrams per liter in water can cause objectionable deposits on watering equipment.

Crop Irrigation: As described in U.S. EPA's Water Quality Criteria 1972 (NAS & NAE 1972), concentrations of a few tenths to a few milligrams per liter of Mn in nutrient solutions are toxic to a number of crops. Application of ground limestone can usually eliminate the toxicity of Mn in acidic soils, when the pH is increased to the 5.5 to 6.0 range.

U.S. EPA Recommended Criterion: 0.2 mg/L for continued use on all soils; 10 mg/L for use up to 20 years on neutral and alkaline fine textured soils. Concentrations for continued use can be increased with alkaline or calcareous soils, and also with crops that have higher tolerance levels.

Mercury (Hg)

Livestock Watering: The ratios between blood and brain levels of methylmercury ranged from 10 in rats to 0.2 in monkeys and dogs (NAS & NAE 1972). Further, blood levels of Hg appeared to increase approximately in proportion to increases in dietary intake. From this, NAS & NAE (1972) assumed a 0.2 greater blood-to-tissue ratio for Hg in livestock. To maintain 0.5 ppm Hg or less in all tissues, it was calculated that a maximum daily intake of 2.3 μ g of Hg per kilogram body weight was necessary. Based upon daily water consumption by meat animals at approximately 8% of body weight, NAS & NAE (1972) estimated that water containing 30 μ g/L of Hg as methylmercury would result in 0.25 ppm Hg in the whole animal body. NAS & NAE (1972) applied a steady-state accumulation factor in humans of 15.2 times weekly intake to meat animals in this calculation.

U.S. EPA Recommended Criterion: 10 μ g/L; this limit provides an adequate margin of safety to humans who will subsequently not be exposed to as much as 0.5 ppm of Hg through the consumption of animal tissue.

Crop Irrigation: No recommended standards or information is presented for Hg and crops in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972).

Molybdenum (Mo)

Livestock Watering: Mo is an essential element (NAS & NAE 1972). Cattle grazed on pastures where the herbage contained 20 to 100 ppm of Mo on a dry basis developed a toxicosis known as teart. Cu added to the diet have been used to control this. Sheep are less sensitive to Mo exposure than cattle, and horses and swine are much less sensitive to Mo exposure than cattle. NAS & NAE (1972) also noted that natural surface waters usually contained less than 1 mg/L Mo. No standards were set for Mo for livestock watering.

Crop Irrigation: Mo does not cause toxicity in plants at concentrations usually found in soils and waters (NAS & NAE 1972). Mo concentrations of 0.10 mg/L or greater in soil solutions were shown to cause associated animal toxicity from consuming clover grown on these soils. In addition, molybdosis of cattle was associated with soils that contained 0.01 to 0.10 mg/L of Mo in saturation extracts of soils.

U.S. EPA Recommended Criteria: 0.010 mg/L for continued use of water on soils, based on animal toxicities from forage; 0.050 mg/L for short-term use on soils that react with Mo (as recommended by U.S. EPA and in multiple state and tribal standards, Table A-4)

Selenium (Se)

Livestock Watering: Se has an essential role in animal nutrition, with levels of 0.1-0.2 ppm recommended in the diets of poultry (NAS & NAE 1972). Selenite (but not selenate) at concentrations of 2 mg/L in drinking water has caused deaths in rats. At the time that U.S. EPA compiled the 1972 Water Quality Criteria (NAS & NAE 1972), it was found that livestock in the United States had been receiving 0.5 ppm or greater concentrations of Se in their diets continuously, without indication of toxicity or accumulation of Se in their tissues that would make the meat or livestock products unfit for human consumption.

U.S. EPA Recommended Criterion: 0.05 mg/L (as recommended by U.S. EPA and in multiple state and tribal standards, Table A-3).

Crop Irrigation: Se at 0.025 mg/L in nutrient solutions decreased yields of alfalfa (NAS & NAE 1972). Applications of Se to soil at a rate of a few kilograms per hectare produced plant concentrations of Se that causes toxicity to animals. Applications of approximately 0.2 kg/hectae of Se resulted in 1.0 to 10.5 mg/kg forage and vegetable crop tissues (NAS & NAE 1972).

U.S. EPA Recommended Criterion: 0.02 mg/L for continuous use on all soils, based on low levels of Se that cause toxic levels in forages (at a rate of 3 acre feet of water/acre/year this concentration represents 3.2 pounds per acre in 20 years). The relative mobility of this element in soils in comparison to other trace elements and slow removal in harvested crops produce a sufficient safety margin.

Vanadium (V)

Livestock Watering: V was found to be an essential element for the growing rat, with physiologically required levels being at or below 0.1 ppm of the diet (NAS & NAE 1972). At 10 ppm in the diet as ammonium metavanadate, it caused toxicity in chicks. As described in NAS & NAE (1972), V concentrations are usually less than 0.05 mg/L in U.S. surface waters.

U.S EPA Recommended Criterion: 0.1 mg/L (as recommended by U.S. EPA and multiple state and tribal standards, Table A-3).

Crop Irrigation: As described in U.S. EPA's *Water Quality Criteria 1972* (NAS & NAE 1972), 10 mg/L V was toxic to barley. Flax, soybeans, and peas showed toxicity to V at a concentration range of 0.5 to 2.5 mg/L, and 560 pounds/acre of V added as ammonium matavanadate to rice paddy soils produced toxicity to rice.

U.S. EPA Recommended Criterion: 0.10 mg/L for continued use on all soils; 1.0 mg/L for a 20-year period on neutral and alkaline fine textured soils (as recommended by U.S. EPA and multiple state and tribal standards, Table A-4).

3. Summary of Metal Bioaccumulation in Crops and Livestock

This section presents a summary of literature regarding toxicity of metals to plants and livestock, as well as discussing bioaccumulation of metals. The bioaccumulation and toxicity factors used in calculating the risk-based water quality standards are presented in Section 5.2 and 5.3, respectively.

3.1. Metals Toxicity in Plants

3.1.1. Toxicity of Metals in Plants

Both leafy and non-leafy vegetables potentially accumulate metals from their surrounding environment (Khan et al. 2015). Metal accumulation in plant materials results in a range of possible adverse effects-1) direct and indirect toxic effects to the plants themselves; 2) altered nutritional value of the plants; 3) foodchain transfer to animals and humans, resulting in potentially toxic effects to the consumer (Khan et al. 2015).

The toxicity of heavy metals to plants has been characterized as due to direct or indirect interference with metabolism or other active processes (Sharma and Dietz 2006), largely through effects on enzymes (Das et al. 1997). Toxic effects of metals on plants, particularly those that cause reduction in growth, can be attributed to reduced photosynthetic activities, impaired plant mineral nutrition, and reduced activity of some enzymes (Kabata-Pendias 2001). The effect of toxic metals on plants is often discussed in terms of cellular and physiological-level effects, such as the inhibition of cytoplasmic enzymes, damage to cell structures due to oxidative stress, and chlorosis (loss of chlorophyll in the leaves); as well as in terms of organism-level effects such as decreases in root or stem growth, decreases in production of phyto-biomass, and water stress (Asati et al. 2016, Rucinska-Sobkowiak 2016, Bhalerao et al. 2015, Vijayarengan and Mahalakshmi 2013, John et al. 2009). Heavy metals can interfere with (e.g., substitute for) other essential elements in various physiological processes. For example, As can substitute for phosphate in phosphorylation reactions, including ATP synthesis; and Cd is chemically similar to Zn, Ca and Fe and can replace these elements in proteins (Verbruggen et al. 2009). Table 3-1 summarizes a range of effects associated with natural or experimental concentrations for 7 metals of interest in this report (As, Cd, Cu, Fe, Pb, Ni and Zn).

Table 3-1. Toxic effects of heavy metals on plants.

Plant	Concentration (mg/kg unless otherwise indicated)	Effect	Reference
		Cadmium	
	300 μΜ	17% decline in root length; 4% decline in stem height	John et al. 2009
Mustard (<i>Brassica</i> juncea)	900 μΜ	54% decline in root length; 51% decline in stem height; 80% decline in Chlorophyll-b; 80% decline in carotenoid content; 87% decline in protein content	
Maize seedling (Zea maize)	377.34 mg/kg	63.4% reduction in shoot growth (dry wt); 70.5% reduction in root growth (dry wt)	Ghani 2010
Spinach (<i>Spinacia</i> oleracea)	1.5 mg/kg	Reduced growth compared to control: Shoot length 18%; shoot wt (fresh) 25.3%; root length 19.7%; root wt (fresh) 35.1%	Alia et al. 2015
Sorghum	70 ppm and 150 ppm (cadmium nitrate)	Stress response indicated by increased MDA (malondialdehyde) and hydrogen peroxide content	Kumar and Pathak 2018
		Iron	
Rice seedlings	490 ppm (at soil pH 3.6)	Seedling mortality	Foy et al. 1978
		Lead	
Mustard (<i>Brassica</i> juncea)	900 μΜ	22% decline in root length; 23% decline in stem height; 35% decline in Chlorophyll-a; 24% decline in Chlorophyll-b	John et al. 2009
,	1500 μΜ	50% decline in root length; 43% decline in stem height; 77% decline in protein content	
Maize seedling (<i>Zea</i> maize)	377.34 mg/kg	26.3% reduction in shoot growth (dry wt); 29.1% reduction in root growth (dry wt)	Ghani 2010
Spinach (<i>Spinacia</i> oleracea)	500 mg/kg	Reduced growth compared to control: Shoot length 13%; shoot wt (fresh) 24.7%; root length 15.8%; root wt (fresh) 28.1%	Alia et al. 2015

Table 3-1 (continued).

Plant	Concentration (mg/kg unless otherwise indicated)	Effect	Reference
		Nickel	
Wheat (Triticum aestivum)	Sand with 10 mM Ni in nutrient solution	Decreased leaf water potential, stomatal conductance, transpiration rate, total moisture content	Bishnoi et al. 1993 in Bhalerao et al. 2015
Wheat (<i>Triticum</i> aestivum)	1 mM NiSO ₄ in nutrient solution	Decreased mesophyll thickness, size of vascular bundles, vessel diameter in main and lateral vascular bundles, width of epidermal cells in leaves.	Seregin and Kozhevnikova 2006 in Bhalerao et al. 2015
Pldegeon pea (Cajanus cajan)	sand with 1 mM NiCl ₂ in nutrient solution	40% decrease in leaf area	Bhalerao et al. 2015
Cabbage/broccoli (Brassica oleracea)	Agar with 5–20 g/m ³ NiSO ₄ .7H ₂ O	Decreased leaf area	Bhalerao et al. 2015
Cabbage/broccoli (Brassica oleracea)	10–20 g/m³ NiSO₄- 7H₂O in agar	Decreased volumes of intercellular spaces and palisade and sponge mesophyll, decrease in chloroplast size and numbers and the disorganization of chloroplast ultrastructure	Molas 1997 in Bhalerao et al. 2015
Alder (<i>Alnus glutinosa</i>)	0.025 mM	Decreased number of leaves (24%) and chlorophyll contents (47%)	Wheeler et al. 2001 in Bhalerao et al. 2015.
Maize	Increased concentration of Ni from 20 (control) to 100 µM (exposure)	Chlorophyll-a decreased 70%, chlorophyll-b decreased 50%	Wheeler et al. 2001 in Bhalerao et al. 2015.
Maize	250 and 500 μM Ni	No effects on chlorophyll content of maize leaves	Wheeler et al. 2001 in Bhalerao et al. 2015.
	1	Zinc	
Tomato (Lycopersicon	50 and 100 mg/kg treatments	Increased growth and yield parameters (root and shoot length, total leaf area and dry weight of root and shoot)	Vijayarengan and
esculentum)	150, 200, and 250 mg/kg treatments	Decreased growth and yield parameters (root and shoot length, total leaf area and dry weight of root and shoot)	Mahalakshmi 2013

Table 3-1 (continued).

Plant	Concentration (mg/kg unless otherwise indicated)	Effect	Reference
Lambsquarters (Chenopodium album)	100.7, 300.7, 500.7, 900.7, 1300.7 and 2100.7 mg/kg	With increasing Zn concentration in soil, plant height, content of a, b, and total chlorophyll and biomass were decreased significantly (p<0.05); tolerant at low and medium concentrations (<900 mg/kg),	Mirshekali et al. 2012
Sorghum (Sorghum bicolor)	100.7, 300.7, 500.7, 900.7, 1300.7 and 2100.7 mg/kg	With increasing Zn concentration in soil, plant height, content of a, b, and total chlorophyll and biomass were decreased significantly (p \leq 0.05); sorghum tolerated high concentrations of Zn.	Mirshekali et al. 2012
Spinach (Spinacia oleracea)	700 mg/kg	Reduced growth compared to control: Shoot length 3%; shoot wt (fresh) 23%; root length 12.7%; root wt (fresh) 14.4%	Alia et al. 2015

Arsenic (As)

As is not considered an essential plant nutrient (Verbruggen et al. 2009). It is taken up through the same plant transport mechanism as phosphate (P), and the toxicity of the arsenate form may be due in part to P replacement in cellular metabolism. The reduced arsenite form can, like Cd, act as a sulphur-seeking ion. Rice in particular is noted as taking up significant amounts of As from soil. However, As is considered less bioavailable than Cd, and large fractions of the As taken up (50%-85%) can be eliminated by root efflux (Verbruggen et al. 2009). Some plants (ferns in the family Pteridaceae) have evolved high tolerance to As through exclusion mechanisms; and a few are 'hyperaccumulators' (to concentrations >0.1%) (Verbruggen et al. 2009). As causes oxidative stress and is also mutagenic.

Cadmium (Cd)

Cd is not an essential plant nutrient (Verbruggen et al. 2009). It is taken up from soil via Ca, Fe, Mn and Zn transport processes. Excess Cd can result in chlorosis, inhibition of growth, browning of roots, and mortality (Asati et al. 2016, Das et al. 1997). Other effects of excess Cd on plants can include impaired uptake, transport, and use of Ca, Mg, P and K (Das et al. 1997); reduced nitrate activity including reduced nitrate absorption and nitrate transport from roots to shoots due to reduced nitrate reductase; and decreased nitrogen fixation and ammonia simulation (Hernandez et al. 1996, Mathys 1975, Balestrasse et al. 2003), and impaired water balance (Costa and Morel 1994). In addition to these and other impacts on cellular processes (e.g., Fodor et al. 1995, De Filippis and Ziegler 1993), Cd can impact seed germination, plant nutrient content, and growth (various references in Asati et al. 2016). The

uptake of Cd may be active transport across cell membranes but is more widely considered to be mainly passive (Tran and Popova 2013).

In a lab-based experiment comparing homogenized soils treated with farmyard manure, John et al. (2009) found Cd to be more toxic to mustard ($Brassica\ juncea$) plants than Pb, causing greater declines in root length, shoot length, chlorophyll-a and-b content, and carotenoid and protein content at lower concentrations (Table 3-1). More Cd was also taken up by mustard than Pb, with greater accumulation in the roots than the shoots (John et al. 2009). However, maximum accumulation of both Cd and Pb was not observed at the highest experimental soil concentrations. For Cd exposures of 0, 150, 300, 450, 600, 750, and 900 μ M, the maximum Cd accumulation in mustard root occurred at the 750 μ M exposure (116.32 mg/g dw) (John et al. 2009). For Cd (and Pb), accumulation in roots (and shoots) declined at higher metal concentrations. The greater accumulation in roots than shoots suggests that roots of the mustard plant function as a barrier to Cd and Pb translocation (from roots to shoots). In contrast, the accumulation of Cd and Pb in *Inula* species apparently reflects the lack of physiological barriers, allowing accumulation in aerial parts of the plant (Tamakhina et al. 2018).

In another lab study, Ghani (2010) found that Cd alone, or Cd plus several other metals (Co, Hg, Mn, Pb and Cr; in contrast to individual doses of these other metals) had the greatest effects on maize seedlings in terms of stunted shoot, root, and seed growth (see also Table 3-1). They classified the relative phytotoxicity of the metals they studied as Cd > Co > Hg > Mn > Pb > Cr. In a lab (potted plant) study examining Cd, Pb, and Zn individual and combined toxicity on spinach, Alia et al. (2015) reported that Cd was more toxic (i.e. toxic at lower soil concentrations) than Pb or Zn (Table 3-1). In addition, the combination of Cd + Pb and Cd + Zn were more toxic that Cd alone, though not as toxic as the sum of the individual metal toxicities.

Copper (Cu)

Cu is a micronutrient for plants (Asati et al. 2016), playing a role in CO_2 assimilation and ATP synthesis (Pichhode and Nikhil 2015 in Asati et al. 2016). It is also an essential component of various proteins that are components of the photosynthetic system and the respiratory electron transport chain. Mining, smelting of Cu ores, and possibly other industries are sources of increased Cu in the environment, including in soils where it contributes to cytotoxicity in plants. Toxicity is evidenced by plant growth retardation and leaf chlorosis, plant mortality, reduced biomass and seed production, and root malformation and reduction (Asati et al. 2016).

Iron (Fe)

Iron is an essential element but can still be toxic to plants at higher concentrations (Connolly and Guerinot 2002). Fe is naturally abundant (>4% of both igneous and sedimentary rocks), with concentrations in soils of 0.2% to 55% (20,000 to 550,000 mg/kg) (U.S. EPA 2003). The trivalent (ferric) form is most abundant naturally, while the divalent (ferrous) form is more soluble and bioavailable; acidic and reducing conditions (which can include lowland and waterlogged soils) promote the soluble ferrous form and therefore the bioavailability of Fe (U.S. EPA 2003). As an essential element functioning in the formation of chlorophyll and in some enzymes of the respiratory system, plants regulate Fe uptake, with mechanisms to absorb and store Fe, including the production of a sequestering protein called ferrtin (Connolly and Guerinot 2002). In addition to natural soil conditions that provide limited bioavailable Fe, Fe deficiencies can be induced by excess Mn and Cu (U.S. EPA 2003). Thus, some of the

apparent toxic effects of these metals, particularly chlorosis, are actually thought to be due to the induced Fe deficiency that occurs. There are potential interactions with soil nitrate, where increasing nitrate can lead to reduced Fe uptake; as well as with phosphate and Mo, which can also reduce Fe uptake. Zn deficiency, in contrast, can increase Fe uptake (U.S. EPA 2003).

Excess Fe has been associated with a variety of plant diseases, such as 'bronzing' of rice in flooded agriculture, and 'freckle leaf' in Hawaiian sugarcane (Foy et al. 1978). Foy et al. (1978) characterized soil concentrations of Fe >400ppm as toxic, and >500 ppm as highly toxic to rice (see also Table 3-1). Excess concentrations of Cu, Ni, Zn, and P can induce Fe deficiency in plants, leading to chlorosis; while excess Fe can also make Zn deficiency worse (Foy et al. 1978).

Lead (Pb)

Pb can impair photosynthesis by reducing chlorophyll content and can also reduce the uptake of Mg and Fe, which can further impair photosynthetic and enzymatic processes (Alia et al. 2015). At doses of 500 mg/kg added to potted soils, Pb significantly decreased growth of both shoots and roots of spinach (Alia et al. 2015; see Table 3-1). Pb combined with Cd was more toxic than the toxicity of the individual metals; however, Pb combined with Zn was less toxic to spinach than Pb or Zn individually (Alia et al. 2015).

Maximum accumulation of Pb was not observed at the highest experimental soil concentrations in a lab-based experiment comparing homogenized soils treated with farmyard manure (John et al. 2009). For Pb exposures of 0, 150, 300, 600, 900, 1200, and 1500 μ M, the maximum Pb accumulation in mustard (*Brassica juncea*) root occurred at the 1200 μ M exposure (85.97 mg/g dw). For Pb (and Cd), accumulation in roots (and shoots) declined at higher metal concentrations.

Nickel (Ni)

While an essential element, Ni is usually found in low concentrations in plants, 0.05-10 mg/kg dry weight (Bhalerao et al. 2015). On average, soil concentrations of Ni are 2-750 mg/kg; farm soil concentrations of Ni are usually 3-1,000 mg/kg but can range up to 24,000 mg/kg in soils near metal refineries, and up to 53,000 mg/kg in dried sludge (Bhalerao et al. 2015). Excess Ni can reduce the uptake of Mg, Fe, and Zn, where reductions in Mg and Fe are a cause of chlorosis (Bhalerao et al. 2015). For example, increasing soil Ni concentration from 50 to 200 mg/kg can decrease Cu, Mg, and Ca in wheat.

Zinc (Zn)

Zn is also essential to plants, with a function in the production of chlorophyll (Asati et al. 2016). Zn deficiencies can be manifested in leaf discoloration (chlorosis) and stunted growth. Excess Zn (and Cd) can result in toxicity, with effects including a decrease in growth of roots and shoots; reduced development, germination, and metabolism; reduced production of chlorophyll, carotenoids, sugars, and amino acids; induced senescence and oxidative damage; and alteration of enzyme efficiencies.

Effects such as chlorosis can also result from a Zn -induced Fe deficiency, since hydrated form of Zn and Fe are similar in size (Marschner 1986). Zn can cause Mn and Cu (Cu) deficiencies in plants, possibly due to reduced transfer of nutrients from roots to shoots (Asati et al. 2016). Zn can also result in phosphorus deficiencies that are seen as purple or red leaf discoloration. In a lab study of rice and soybean plant responses to naturally collected contaminated soils with a combination of heavy metals, de Souza-Silva

et al. (2014) found that Zn interfered with Fe metabolism, as a mechanism for observed chlorosis and associated plant toxic responses.

In a study evaluating the uptake and accumulation of 19 elements, including the metals As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn, in vegetables (including beans, broccoli, carrots, onions, and tomatoes) grown in reclaimed sediments from the 'Peoria Pool' of the Illinois River, Ebbs et al. (2006) found that only Zn (Zn) and Mo were accumulated in any of the vegetables to levels greater than those grown in reference soils. Zn was found up to 3X higher, and Mo up to 10X higher in beans. Their results showed that the dietary intake of Cu, Zn and Mo would be significantly higher from vegetables grown in pool sediments than reference soils, and for Mo this would represent 500% of the recommended daily allowance. But the Mo levels would be below the lowest observed effects level (LOAEL). They also estimated that dietary exposures for Cd and Pb from vegetables grown on the reclaimed pool sediments would also be below recommended limits except for Cd exposure for the 1-3-year-old age group (Ebbs et al. 2006).

In a lab study of growth effects on spinach, Alia et al. (2015) found Zn significantly reduced both shoot and root growth at relatively high concentrations (700 mg/kg; see Table 3-1). Mixture of Zn with Pb reduced its toxicity.

3.2. Factors Affecting Metals Bioaccumulation in Plants

Bioavailability, and thus the uptake of various heavy metals from soil, is affected by factors including the concentration of metals in the soil, the type of metal, their form in the soil matrix and solubility; soil characteristics (e.g., sediment particle size composition, organic content, pH), the type of plant, phase of development, and various plant adaptations that affect the uptake, bioaccumulation, and translocation of heavy metals in plants (Tamakhina et al. 2018, Asati et al. 2016, Khan et al. 2015, Shah et al. 2010, Verbruggen et al. 2009, Benavides et al. 2005). As an example, regarding soil type, Van Lune and Zwart (1997, in Stasinos et al. 2014) found Cd uptake in carrots to be greater when grown in sandy vs sandy loam soils, even though the sandy-loam soils had higher Cd concentrations. Cd binds to organic matter and clays in soils, so sandy soils with little organic matter or clay can be associated with higher Cd uptake (Derrick 2006). Li et al. (2005) found that both metal concentration in the soil and genotype affected the uptake of Cd by rice, but that at lower soil concentrations of metal, soil properties that affected Cd mobility were also influential. A summary of literature assessing bioaccumulation is provided in Table 3-2 and the results are discussed below.

Table 3-2. Bioaccumulation levels of heavy metals in plants. (When applicable, significant differences are in bold; standard deviations are in parentheses following the means).

	Metal Concentration mg/kg (dry wt)		Corresponding		
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference	
		Arsenic		· ·	
Bean (stem)	0.5 (0.1)	0.2 (<0.1)		Ebbs et al. 2006	
Vegetables ¹	0.0326		15.5107	Liu et al. 2013	

Table 3-2 (continued).

	Metal Concentratio	n mg/kg (dry wt)	Corresponding	
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference
Carrot	1.2 (in red-sludge soil), 0.36 (in black-sludge soil)	0.11		Bunzl et al. 2001 in Stasinos et al. 2014
Carrot	Below DL	Below DL in control soil and carrots	178 μg/g	Pendergrass and Butcher 2006 in Stasinos et al. 2014
Onion	0.55 in leaves; 0.45 in bulbs		6.1 to 16.7 (irrigated with water <0.005 to 1.014 mg/L)	Dahal et al. 2008 in Stasinos et al. 2014
Onion	14.7 to 22.5 μg/kg			Bakkali et al. 2012 in Stasinos et al. 2014
Potato	Correlation between As content of soil and the water. Highest As in the roots than shoots > leaves > edible parts		6.1 to 16.7 (irrigated with water <0.005 to 1.014 mg/L)	Dahal et al. 2008 in Stasinos et al. 2014
Potato	0.03 to 0.07			Srek et al. 2010
		Cadmium		
Pepper (fruit)	0.8 (0.1)	0.5 (0.1)		Ebbs et al. 2006
Carrot		0.12		Stasinos et al. 2014
Carrot	0.011	0.004		Kirkillis et al. 2012 in Stasinos et al. 2014
Vegetables ¹	0.0472		0.7206	Liu et al. 2013
Carrot	[uptake in carrots increased linearly with increasing soil concentrations]		0.87 to 7.0 mg/kg (in sandy soil); 0.21 to 2.8 mg/kg (in sandy loam soil)	Van Lune and Zwart 1997 in Stasinos et al. 2014
Carrots	0.15		0.06 mg/l in treated sewage added to soil	Ghosh et al. 2012 in Stasinos et al. 2014
Carrots	2.55 in leaves, 1.48 in tubers	0.1 in leaves, 0.08 in tubers	Grown in polluted river sediments	Van Driel et al. (1995) in Stasinos et al. 2014
Onion	0.12			Vincevica-Gaile et al. 2013 in Stasinos et al. 2014

Table 3-2 (continued).

	Metal Concentratio	n mg/kg (dry wt)	Corresponding	
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference
Onion	23.6 to 32.3 μg/kg			Bakkali et al. 2012 in Stasinos et al. 2014
Onion	No significant difference in concentration in onion from Thiva basin and control sample			Kirkillis et al. 2012 in Stasinos et al. 2014
Potato	0.02 to 0.07			Srek et al. 2010
Potato	Cd levels in potato peels >> than peeled tubers; declined with increasing soil pH			Smith 1994 in Stasinos et al. 2014
Elecampane (<i>Inula</i> helenium, aka horse-heal, elfdock)	2.06±0.19 32 (BAR 1.78) (above ground biomass) 0.28±0.04 32 (BAR 2.04) (below ground biomass)	1.53±0.44 32 (BAR 3.48) (above ground biomass) 0.45±0.08 32 (BAR 1.02) (below ground biomass)		Tamakhina et al. 2018
yellowhead or meadow fleabane (Inula britannica)	0.47±0.06 32 (BAR 2.04) (above ground biomass) 0.35±0.09 32 (BAR 1.52) (below ground biomass)	0.97±0.09 32 (BAR 4.85) (above ground biomass) 0.88±0.07 32 (BAR 4.40) (below ground biomass)		Tamakhina et al. 2018
A yellow daisy (Inula germanica)	0.76±0.10 32 (BAR 3.3)	0.28±0.05 32 (BAR 1.33) (above ground biomass) 0.22±0.06 32 (BAR 1.05) (below ground biomass)		Tamakhina et al. 2018
Rice (leaves)	4.86 0.87 0.59 0.25 0.36 0.22 0.28		25 23 20 23 26 28 27	de Souza-Silva et al. 2014

Table 3-2 (continued).

	Metal Concentratio	n mg/kg (dry wt)	Corresponding	
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference
	1.50		25	
	0.22		23	
	0.24		20	de Souza-Silva et al.
Soybean (leaves)	0.42		23	2014
	0.36		26	
	0.03		28	
	0.32		27	
		Copper		
Carrot root (peeled)	8.5 (0.6)	6.1 (0.6)		Ebbs et al. 2006
Carrot	7.2 (in red-sludge soil), 8.1 (in black-sludge soil)	5.1		Bunzl et al. 2001 in Stasinos et al. 2014
Carrots	11.5 in leaves, 9.54 in tubers	8.01 in leaves, 7.18 in tubers	Grown in polluted river sediments	Van Driel et al. (1995) in Stasinos et al. 2014
Carrots	2.7 - 7.6 (average 5.9)		Grown in contaminated soil; ratio of concentration in soil to carrots ranged from 0.17-43%	Economou- Eliopoulos et al. 2012 in Stasinos et al. 2014
Onion	No significant difference in concentration in onion from Thiva basin and control sample			Kirkillis et al. 2012 in Stasinos et al. 2014
Potato	3.5 to 5.7			Srek et al. 2010
Elecampane (<i>Inula</i> helenium, aka horse-heal, elfdock)	29.9±2.54 32 (BAR 2.41) (above ground biomass) 8.86±3.91 32 (BAR 0.71) (below ground biomass)	15.40±3.32 (BAR 4.4) (above ground biomass) 4.21±1.63 32 (BAR 1.2) (below ground biomass)		Tamakhina et al. 2018

Table 3-2 (continued).

	Metal Concentratio	n mg/kg (dry wt)	Corresponding	
Plant	Grown in	Grown in	Soil	Reference
	Contaminated Soils	Reference Soils	Concentration (mg/kg)	
	4.60±1.28 32 (BAR	6.03±2.44 32 (BAR		
yellowhead or	0.11) (above ground biomass)	1.40) (above ground biomass)		Tamakhina et al.
meadow fleabane	,			2018
(Inula britannica)	5.68±2.17 32 (BAR 0.14) (below ground	3.21±1.15 32 (BAR 0.75) (below		2018
	biomass)	ground biomass)		
	16.20±3.58 32 (BAR	7.12±2.11 32 (BAR		
	0.40) (above ground	1.45) (above		
A yellow daisy	biomass)	ground biomass)		Tamakhina et al.
(Inula germanica)	5.68±2.71 32 (BAR	4.81±1.12 32 (BAR		2018
	0.14) (below ground	0.98) (below		
	biomass)	ground biomass)		
	316.6		272	
	26.7		141	
	22.2		115	de Souza-Silva et al. 2014
Rice (leaves)	18.2		121	
	20.6		144	
	20.9		166	
	24.2		153	
	12.1		272	
	9.5		141	
	8.9		115	de Souza-Silva et al.
Soybean (leaves)	7.5		121	2014
	7.1		144	
	8.5		166	
	8.2	•	153	
		Iron	T.	T
				Tokalioglu et al.
Onion	23 μg/g,			2006 in Stasinos et
				al. 2014
	840.9		537	
	63.7		936	
Diag (Inc.)	82.5		861	de Souza-Silva et al.
Rice (leaves)	104.6		510	2014
	93.2		99	-
	92.6		100	
	273.7		97	

Table 3-2 (continued).

	Metal Concentratio	n mg/kg (dry wt)	Corresponding	
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference
Soybean (leaves)	33.8 56.7 47.3 45.1 28.8 43.6 38.7		537 936 861 510 99 100	de Souza-Silva et al. 2014
		Lead		
Carrot		0.05		Stasinos et al. 2014
Vegetables ¹	0.426		68.6444	Liu et al. 2013
Carrot	9.1 (in red-sludge soil), 4.1 (in black-sludge soil)	0.27		Bunzl et al. 2001 in Stasinos et al. 2014
Carrot	20 μg/g	Below DL in control soil and carrots	585 μg/g	Pendergrass and Butcher 2006 in Stasinos et al. 2014
Onion	0.12			Vincevica-Gaile et al. 2013 in Stasinos et al. 2014
Onion	No significant difference in concentration in onion from Thiva basin and control sample			Kirkillis et al. 2012 in Stasinos et al. 2014
Elecampane (<i>Inula</i> <i>helenium,</i> aka horse-heal, elfdock)	12.51±2.37 32 (BAR 0.43) (above ground biomass) 5.03±1.14 32 (BAR 0.17) (below ground biomass)	5.46±1.17 32 (BAR 1.14) (above ground biomass) 2.14±0.64 32 (BAR 0.45) (below ground biomass)		Tamakhina et al. 2018
yellowhead or meadow fleabane (Inula britannica)	0.58±0.07 32 (BAR 0.03) (above ground biomass) 0.71±0.11 32 (BAR 0.04) (below ground biomass)	5.54±1.72 32 (BAR 1.32) (above ground biomass) 5.10±1.68 32 (BAR 1.21) (below ground biomass)		Tamakhina et al. 2018

Table 3-2 (continued).

	Metal Concentratio	n mg/kg (dry wt)	Corresponding	
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference
A yellow daisy (Inula germanica)	0.93±0.12 32 (BAR 0.05) (above ground biomass) 1.43±0.53 32 (BAR 0.07) (below ground biomass)	3.46±1.18 32 (BAR 1.13) (above ground biomass) 2.82±1.02 32 (BAR 1.05) (below ground biomass)		Tamakhina et al. 2018
	322.5 20.1 17.4		333 208 174	-
Rice (leaves)	13.8 15.6		198 226	de Souza-Silva et al. 2014
	15.6 19.5 9.4	-	244 229 333	
Soybean (leaves)	6.5 5.4 3.9		208 174 198	de Souza-Silva et al. 2014
	3.1 3.5 4.1		226 244 229	
		Nickel		
Bean (seed)	8.9 (1.9)	5.1 (0.2)		Ebbs et al. 2006
Carrot		0.28		Stasinos et al. 2014
Carrot		0.031-0.042		Bakkali et al. 2012 in Stasinos et al. 2014
Carrot	0.474	0.093		Kirkillis et al. 2012 in Stasinos et al. 2014
Carrots	0.3		0.25 mg/l in treated sewage added to soil	Ghosh et al. 2012 in Stasinos et al. 2014

Table 3-2 (continued).

	Metal Concentration mg/kg (dry wt)		Corresponding		
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference	
Carrots	3.0 – 4.0 (average 3.5)		Grown in contaminated soil; ratio of concentration in soil to carrots ranged from 0.17-43%	Economou- Eliopoulos et al. 2012 in Stasinos et al. 2014	
Onion	0.25			Vincevica-Gaile et al. 2013 in Stasinos et al. 2014	
Onion	Concentration in onion from Thiva basin significantly elevated compared to the concentration of Ni in control sample			Kirkillis et al. 2012 in Stasinos et al. 2014	
Potato	800 µg/kg, up to 9 times higher than the one in control samples	78 μg/kg		Kirkillis et al. 2012 in Stasinos et al. 2014	
		Zinc			
Pepper (shoot)*	69	42		Ebbs et al. 2006	
Pepper (fruit)*	22	16		Ebbs et al. 2006	
Bean (stem)*	35	17		Ebbs et al. 2006	
Bean (leaf)*	33	23		Ebbs et al. 2006	
Bean (seed)*	34	28		Ebbs et al. 2006	
Brocolli*	22	10		Ebbs et al. 2006	
Carrot (root)	29	20		Ebbs et al. 2006	
	86.23		100 (BCF 0.9)		
	462.06		300 (BCF 1.5)	_	
Lambsquarters	666.62		500 (BCF 2.3)	Mirshekali et al.	
(Chenopodium album)	1001.36		900 (BCF 1.1)	2012	
album)	1067.82		1300 (BCF 0.8)		
	1213.18		2100 (BCF 0.6)		

Table 3-2 (continued).

	Metal Concentratio	n mg/kg (dry wt)	Corresponding	
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference
Sorghum (Sorghum bicolor)	272.95 2208.34 2538.09 2022.85 1629.3 1714.9		100 (BCF 2.7) 300 (BCF 7.3) 500 (BCF 5.1) 900 (BCF 2.2) 1300 (BCF 1.3) 2100 (BCF 0.8)	Mirshekali et al. 2012
Carrot	63 (in red-sludge soil), 45 (in black-sludge soil)	16		Bunzl et al. 2001 in Stasinos et al. 2014
Carrots	88.4 in leaves, 40.2 in tubers	23.8 in leaves, 17.0 in tubers	Grown in polluted river sediments	Van Driel et al. (1995) in Stasinos et al. 2014
Carrots	18 – 19 (average 19)		Grown in contaminated soil; ratio of concentration in soil to carrots ranged from 0.17-43%	Economou- Eliopoulos et al. 2012 in Stasinos et al. 2014
Onion	11 μg/g,			Tokalioglu et al. 2006 in Stasinos et al. 2014
Potato	13.6 to 24.5			Srek et al. 2010
Elecampane (<i>Inula</i> <i>helenium,</i> aka horse-heal, elfdock)	23.48±5.61 32 (BAR 0.70) (above ground biomass) 18.75±3.18 32 (BAR 0.56) (below ground biomass)	20.62±5.87 32 (BAR 0.93) (above ground biomass) 16.83±4.24 32 (BAR 0.76) (below ground biomass)		Tamakhina et al. 2018
yellowhead or meadow fleabane (Inula britannica)	18.07±2.14 32 (BAR 0.18) (above ground biomass) 20.63±3.18 32 (BAR 0.21) (below ground biomass)	22.63±4.39 32 (BAR 3.97) (above ground biomass) 4.02±1.21 32 (BAR 0.70) (below ground biomass)		Tamakhina et al. 2018

Table 3-2 (continued).

	Metal Concentration mg/kg (dry wt)		Corresponding	
Plant	Grown in Contaminated Soils	Grown in Reference Soils	Soil Concentration (mg/kg)	Reference
A yellow daisy (Inula germanica)	14.32±2.37 32 (BAR 0.14) (above ground biomass) 18.45±3.15 32 (BAR 0.18) (below ground biomass)	25.37±4.25 32 (BAR 1.17) (above ground biomass) 6.15±1.13 32 (BAR 0.28) (below ground biomass)		Tamakhina et al. 2018
Rice (leaves)	2,562.1 543.1 386.5 145.3 119.4 108.4 94.2		544 189 113 106 106 108 102	de Souza-Silva et al. 2014
Soybean (leaves)	599.6 152.4 157.9 68.2 55.2 59.9 81.8		544 189 113 106 106 108 102	de Souza-Silva et al. 2014
Sugar beet	50, 100 and 300 μm in nutrient solution	Control 1.2 µm in nutrient solutio	decreased root and shoot fresh and dry mass, and increased root / shoot ratios. compared to control conditions (1.2 lm Zn). Inward-rolled leaf edges and a damaged, brownish root system with short lateral roots; decreased N, Mg, K and Mn in all plant parts; increased P and Ca in shoots; Leaves in 50 and 100 µm Zn symptoms of Fe deficiency; in 300 µm Zn decreased photosystem II efficiency.	Sagardoy et al. 2009

^{*}estimated from a bar graph

^{1 -} including rape, celery, cabbages, carrots, asparagus lettuces, cowpeas, tomatoes and cayenne pepper

For Cd and some other metals, soil pH is a consistently important factor affecting availability and uptake of the metal (Tran and Popova 2013). Increasing pH increases Cd adsorption to the soil, making it less extractable (Christensen 1984 in Tran and Popova 2013). Grasses are less affected by soil pH effects on Cd bioavailability than other plants. Some weeds such as capeweed take up Cd to a greater extent than some plants in the cabbage family (e.g. broccoli, Chinese broccoli, brussels sprouts, cabbage, cauliflower and kohlrabi), which accumulate Cd to a greater extent than legumes, which accumulate more than grasses (*Figure 3-1*) (Derrick 2006).

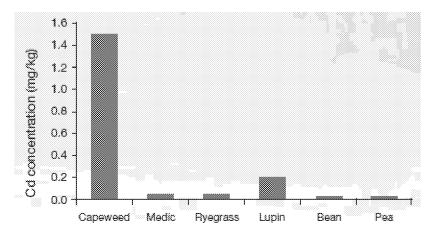


Figure 3-1. Cadmium concentrations in various plants (from Derrick 2006).

However, some field studies show more plant uptake at higher soil pH (e.g., Li et al. 2005 in Tran and Popova 2013). Cd is reported to be more bioavailable than As (Verbruggen et al. 2009). In field studies, rice plants took up more Cd as acidic soil was made more neutral (0.36 mg kg $^{-1}$ of Cd in the rice grains at pH 4.95; 0.43 mg kg $^{-1}$ Cd in grain at pH of 6.54) (Li et al. 2005).

The concentration of metals in soil is consistently listed as a factor influencing plant uptake and accumulation. Many experimental results suggest that higher soil concentration of metals results in higher concentrations in exposed plants; e.g., the uptake of Ni by lambsquarters (Mirshekali et al. 2012); the uptake of Cd and Pb by several *Inula* species (Tamakhina et al. 2018); the uptakes of Cd, Pb, or Zn by spinach (Alia et al. 2015). Other reports suggest non-linear responses to increasing metals exposures, for example, the uptake of Ni by sorghum (Mirshekali et al. 2012; see also John et al. 2009, Asati et al. 2016, Liu et al. 2013). Alia et al. (2015) found that root accumulation of Cd by spinach was greater in Cd-only treatments and was reduced in treatments in which Cd was combined with Pb, and more so when combined with Zn. In this same study, Alia et al. (2015) found Zn uptake by spinach roots was greater in Zn-only treatments, followed by Zn+Cd and then Zn+Pb. It should be noted that metals available for uptake by plants are those that are in soluble components in the soil or that can be solubilized by root exudates (Blaylock and Huang 2000, in Asati et al. 2016).

Field studies have reported moderate to strong relationships between degree of soil contamination with metals and level of uptake in various plants; however, for Cd and Pb, Tamakhina et al. (2018) found this relationship to be weak (r=0.35-043), and for Cu and Zn it was very weak (r<0.2).

Whether a metal is considered an essential element (playing a significant physiological role) or not also influences uptake and bioaccumulation, as this can influence the types of adaptations a plant has evolved (e.g., to assure sufficient quantities of essential metals are taken up and maintained, or to block

uptake). Several metals (e.g., Pb, Cd, Hg, As) that are not considered essential for plant growth have toxic effects at low concentrations (Asati et al. 2016). For non-essential metals, the toxicity response (i.e. the dose-response curve) includes a no-effect and a toxicity zone; whereas for essential metals, there is also a deficiency zone (Sharma and Dietz 2006); i.e. plants can be sensitive to both deficiencies and excesses of essential metals (Asati et al. 2016). This difference is reflected in the growth responses of plants to the different types of metals.

Type of plant affects degree of metals uptake. For example, Cd is accumulated to higher levels by leafy vegetables and tubers than by fruits and cereals (Tran and Popova 2013). Such patterns are likely to be metal- and plant-specific. de Souza-Silva et al. (2014) found rice to be more sensitive to and more readily absorb several co-occurring heavy metals (Cd, Cu, Fe, Pb, and Zn) than soybeans. It also appears that certain practices, such as crop rotation and tillage, can influence uptake; for example, Mench et al. (1998, in Tran and Popova 2013) found crop rotation and tillage practices had more effect on Cd uptake than soil concentrations.

Temperature affects the uptake of Ni from soils in a non-linear (S-curve) fashion, with lower uptake at low temperatures (e.g., 2° C), and maximum absorption between 23 and 30°C (Bhalerao et al. 2015). Bhalerao et al. (2015) found that the addition of 2-4-dinitrophenol (20 μ M) as well as anaerobic conditions inhibited Ni uptake by 91 and 86%, respectively.

There also is evidence that some plants chronically exposed to metals contamination develop tolerances to the metals (Ernst et al. 1990 and Schat et al. 1996 cited in Sharma and Dietz 2006), characterized as 'accelerated micro-evolution' (Sharma and Dietz 2006). Examples given of plants that have evolved this kind of tolerance to metals exposure include *Arabidopsis helleri* (rockcress) which is characterized as a Zn-hyperaccumulator; *Thlaspi* species (pennycress), which are Cd-/Zn- or Ni-hyperaccumulators; *Silene vulgaris* (bladder campion or maidenstears) that have Zn-, Cu-, and Cd-resistant ecotypes; and *Alyssum bertolonii*, which is a Ni-hyperaccumulator. Of importance is that such metal-tolerant eco- or genotypes exhibit altered dose-response curves, with wider no-effect zones, and possibly limited beneficial zones (Sharma and Dietz 2006). Plants able to accumulate Zn, Ni and Cd in excess of 1, 0.1, and 0.01% of dry weight are considered 'hyperaccumulators' of these metals (Sharma and Dietz 2006).

The bioaccumulation values used in this report are those published by Oak Ridge National Laboratory (ORNL) (Baes et al. 1984). These values have been used by U.S. EPA in risk-based assessments and represent default element-specific bioaccumulation estimates that have wide applicability. The element-specific parameters include two types of soil-to-plant concentration factors (B_v and B_r) as well as beef transfer factors. The plant bioaccumulation factors are defined as

 B_{ν} : bioaccumulation vegetative. These are applicable to vegetative (nonreproductive) parts of plants such as leaves and stems. These values are used for assessing crops and subsequent consumption of crops by livestock.

 B_r : bioaccumulation reproductive. These are applicable to the reproductive (fruit) parts of plants. These values are used to assess uptake of metals from soil by homegrown produce, and subsequent consumption of produce by humans.

Both values are presented in *Table 3-3. Bioaccumulation Factors used for Assessment of Metals Uptake* by *Plants (Baes et al. 1984)*.

Table 3-3. Bioaccumulation Factors used for Assessment of Metals Uptake by Plants (Baes et al. 1984)

Metal	Bv (Bioaccumulation Vegetative)	Br (Bioaccumulation Fruit/Vegetable Plant)
Aluminum	0.001	0.000650
Antimony	0.05	0.03
Arsenic	0.01	0.006
Barium	0.0375	0.015
Beryllium	0.0025	0.00150
Cadmium	0.1375	0.15
Chromium	0.001875	0.0045
Cobalt	0.005	0.007
Copper	0.1	0.25
Iron	0.001	0.001
Lead	0.01125	0.009
Manganese	0.0625	0.05
Mercury	0.225	0.2
Molybdenum	0.0625	0.06
Nickel	0.015	0.06
Selenium	0.00625	0.025
Silver	0.1	0.1
Thallium	0.001	0.0004
Vanadium	0.001375	0.003
Zinc	0.264	0.9

3.3. Metals Toxicity and Bioaccumulation in Livestock

Some trace metals (e.g., Cu, Fe, Zn) are essential elements for physiological functions of livestock, while others (e.g., Cd) have no recognized physiological function. But any element in excess can have detrimental effects on the condition, health, or survival of livestock, as well as on humans through consumption. The question is what levels of exposure through food, water, or soil are safe, or conversely might lead to undesirable effects. This summary presents information from technical literature on this question for 7 metals of interest--As, Cd, Cu, Fe, Pb, Ni, and Zn—considering concentrations in food stuffs, water, and soil (to the extent relevant information is available).

Information on quantities of metals that are safe, or conversely are toxic to livestock is presented in diverse ways. Some toxic or tolerable values are given as a feeding rate (e.g., mg/k/day) or total quantities that can be fed (dose, e.g., μg or mg of the metal as a total dose for a particular species, or per kg animal body weight), while others are presented as (safe or toxic) concentrations in feed (e.g., μg or mg of metal per kg feed). With enough information and assumptions about average weight of the

animal in question and on daily food consumption, concentrations in food can be converted to daily or single dose concentrations, and vice versa.

Much of the information on safe or toxic levels of metals consumed by livestock are in feed, rather than plant (e.g., grass) content that would be consumed through grazing. For such information to be used to estimate safe (or toxic) levels in grazing material, daily consumption rates of grass or fodder would have to be estimated and compared on a weight basis to complete feeds in order to translate total safe (or toxic) metal values to concentrations in the grazed plant material.

3.3.1. Arsenic (As)

The forms of As to which livestock are exposed matters with respect to estimating appropriate threshold levels - trivalent As compounds (arsenites) are found to be more toxic than pentavalent forms (arsenates) (Raisbeck et al. 2011; Gough et al. 1979). Some forms of arsenic--arsenilic acid, 4-nitrophenylarsonic acid, 3-nitro-4-hydroxyphenylarsenic acid, and arsenobenzene--are used as growth stimulants for pigs and poultry (Underwood 1971 sited in Gough et al. 1979). In addition, some types of livestock appear to be more sensitive to As than others.

In Feed (or direct consumption)

Sheep: Non-adverse levels of total As in feed have been estimated at 2 mg/kg of complete feed (Table 3-4) for livestock (including sheep, cattle, and pigs) by the European Union (Henja et al. 2018, Mandal 2017). This would have to be multiplied by average feeding rates for sheep (or other livestock species) to estimate a total (daily) dose that should not be exceeded. A 72 kg sheep (average range 45-100 kg) eating 2.5% of their live weight in dry weight (DW) of feed would consume about 1.8 kg DW of feed per day. Assuming an average DM of feed of 75%, this would be a consumption of about 2.4 kg of complete feed. This would, on average, expose them to 4.6 mg/day of As.

There is substantial overlap in the ranges of apparently sublethal and lethal doses of As as arsenite for sheep (Table 3-4 4), with a sublethal range for arsenite of from 5-12 mg /kg BW (equivalent to single doses of about 360 - 864 mg/animal for a 72 kg sheep); and a lethal range of 1-25 mg /kg BW (equivalent to single doses of about 50 - 2,500 mg/animal). For arsenic trioxide, the sublethal (but toxic) exposure is 33-55 mg /kg BW (equivalent to about 1,500-5,500 mg/animal) (Table 3-4 4). Thus, toxic effects are found at doses much higher than the reported safe concentrations in feed, which represent safe 'daily doses'. A threshold for sheep lies between the safe dosage of 2 mg As/kg feed (or about 4.6 mg As/day) and toxic doses of as low as 50 mg As (as a single dose).

Table 3-4. Arsenic compounds toxicity to sheep.

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe	2 mg total As/kg (max safe dose in complete feed) ²		[see footnote 1]
levels)	58 mg As/kg feed for 3 wks (no effect) ³		[see footnote 2]
		11 mg Arsenite /kg BW (toxic oral dose) [=~792 mg/animal for a 72 kg sheep)	
Sublethal		5-12 mg Arsenite/kg BW (single dose, acutely toxic) [=~ 360 – 864 mg/animal for a 72 kg sheep]	
		33-55 mg Arsenic trioxide/kg BW (toxic oral dose; =~ 1.5 – 5.5 g/animal)	
		2-4 g total As (2,000-4,000 mg) (2%-93% mortality) (or about 28-56 mg/kg BW)	1 g Arsenate/day (100% mortality in 6 to 94 days)
Lethal		1-25 mg Arsenite /kg B W (lethal oral dose, most animals) [=~72 – 1,800 mg/animal]	

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range). Assumed range of BW's for sheep to be 45-100 kg (use 72 kg for calculations).

Cows/Cattle: As discussed above, safe levels of total As in feed have been estimated at 2 mg/kg of complete feed (Table 3-5). Assuming an average weight for cattle of 753 kg, and an average feeding rate of 2.5% of BW/day, this would lead to an As exposure of about 50 mg/day. In contrast to this 'safe' limit, an 'upper' threshold after which toxic symptoms can occur was reported for cattle of 250 ppm (mg/kg feed) (Table 3-5), which is 5 times higher than the reported safe level of As. A different study observed sublethal symptoms in cattle at a daily dose of 50 μg/kg BW/day, which for an average-weight cow would be about 37.7 mg/animal/day, suggesting that a 'safe' threshold for daily ingestion of As would be below this (i.e. between 2 and 37.7 mg/animal/day). Single-dose toxic levels of As ranged from 7.5 mg Arsenite/kg BW (about 5,650 mg/animal) as the lowest reported dose resulting in sublethal effects, to 25 mg Arsenite/kg BW for a lethal dose, which is equivalent to about 18,800 mg as a single dose for an average-weight cow. As observed for sheep, there was a lot of overlap in the range of sublethal and lethal dosages (Table 3-5). Thus, a threshold for cattle probably lies between the chronic threshold dosage of 250 mg As/kg feed and toxic dose of as low as 5,650 mg As (as a single dose).

 $^{^2}$ – if sheep eat 2-3% of their BW in DM/day (use 2.5% for calculations) and weigh 45-100 kg (use 72 kg for calculations), then this would be a dose of about 2.4-5.4 mg As/day (or about 0.002-0.005 g/day).

 $^{^3}$ – assuming this is reported as wet mass, and assuming 75% DM, and then assuming sheep eat 2-3% of their BW in feed per day, this would be equivalent to a dose of about 69.6-154.6 mg As/day (\rightarrow 0.07 – 0.15 g/d) (for 3 wks).

Table 3-5. Toxicity of Arsenic compounds to Cattle

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe levels)	2 mg total As/kg (max safe dose in complete feed)	50 mg inorganic As/kg BW (max tolerable dose) [=~37,650 mg/animal)	
	250 ppm (=mg/kg) As (chronic limit)	100 mg organic As/kg BW (max tolerable dose) [=~75,300 mg/animal]	
Sublethal		>200-300 mg inorganic As/kg (signs of toxicity) [=~150,600-225,900 mg/animal]	50 μg/kg BW/day [=~37.65 mg/animal/day] (organic arsenic, acute tox effects, e.g., abdominal cramping, hyperesthesia in extremities, abdominal patellar reflexes and abdominal electrocardiogram)
		7.5 mg Arsenite/ kg BW (toxic oral dose) [=~5,648 mg/animal]	
		33-55 mg Arsenic trioxide/kg BW [=~24,850-41,415 mg/animal]	
		2-4 g total As (2%-93% mortality) (or about 2.7-5.3 mg/kg BW)	
Lethal		1-4 g Arsenite/ animal (lethal) (or about 1.3-5.3 mg/kg BW)	
		1-25 mg Arsenite /kg BW (lethal oral dose, most animals) [=~753-18,825 mg/animal]	

^{1 –} reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Other Animals: There is information on As toxicity for a range of other domestic and wild animals, including pigs, horses, chickens, goats, white-tailed deer, and pheasant (Table 3-6). The 2 mg As/kg of complete feed is applied to most animals. The NOAEL-based (no effects, or safe, level) food benchmark for white-tailed deer is quite a bit lower than this at 0.621 mg/kg food/day (Table 3-6). The lowest effects level was 10-times this value at 6.21 mg/kg food/day. These were derived from the NOAEL and LOAEL for white-tailed deer of 0.019 mg/kg BW/day and at 0.191 mg/kg BW/day, respectively. A lethal

 $^{^2}$ – if cows eat 2-3% of their BW in DM/day (use 2.5% for calculations), and weight 45-100 kg (use 72 kg for calculations), then this would be a dose of about 2.4-5.4 mg As/day (or about 0.002-0.005 g/day).

single dose for white-tails was reported as 34 mg /kg BW (for arsenite). Nevertheless, a safe threshold concentration for white-tailed deer is likely close to the NOAEL, or between the NOAEL and the LOAEL.

Though only one value for goats is available, it is a safe single does, and at 30 mg/kg BW, is higher than the safe does for some other domestic animals (e.g., a sublethal toxic dose for pigs is 7.5-11 mg/kg BW for arsenic trioxide, but only 2mg/kg BW for sodium arsenite, Table 3-6). Horses are similar to cattle and sheep in their relative sensitivity (33-55 mg arsenic trioxide/kg BW), while chicken embryos are the most sensitive (sublethal effects observed at 0.03-0.3 μ g arsenite /embryo). Since not definitive 'safe' (or noeffects) levels are given for these animals, the safe threshold can only be suggested as lying below these reported levels. A 10x factor is sometimes used to extrapolate between no-effects and lowest-effects levels (Sample et al. 1996), which could be applied for estimating safe levels in this case.

Table 3-6. Arsenic compounds toxicity, other animals.

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe levels)	2 mg total As/kg (max safe dose in complete feed)	30 mg/kg BW (m ax tolerable dose, inorganic As, goats)	0.019 mg/kg BW/day (NOAEL, white-tail deer) [~0.86 mg As/animal/day]
	0.621 mg/kg food/day (NOAEL-based food benchmark, white-tail deer)		
	6.21 mg/kg food/day (LOAEL- based food benchmark, white-tail deer)	(single dose, malformation, chicken)	0.191 mg/kg BW/day (LOAEL, white-tail deer) [~8.6 mg As/animal/day]
	1 g/kg of diet (clinical signs of toxicity, arsanilic acid, pigs)	6.5 mg Arsenite /kg BW (toxic oral dose, horses)	
Sublethal		7.5-11 mg Arsenic trioxide/kg BW (toxic oral dose, pigs) [=~ 0.75-1.98 g/animal]	
		33-55 mg arsenic trioxide/kg BW (toxic dose; cattle, sheep, horses)	
		2 mg sodium arsenite/kg BW (toxic oral dose, pigs) [=~ 0.2-0.36 g/animal)	
Lethal	500 mg/kg food (32-day LD ₅₀ , mallard)	34 mg Arsenite/kg BW (lethal dose, whitetail deer)	2-4 mg Arsenite/kg BW/day (14 wk, lethal, horse)
		1-25 mg Arsenite/kg BW (lethal oral dose, most animals)	

Table 3-6 (continued).

Concentration in feed	Single dose ¹	Daily dose
	323 mg Arsenite/kg BW (LD ₅₀ single dose, mallard)	
	47.6 mg Arsenite/ kg BW (LD ₅₀ single dose, quail)	
	386 mg Arsenite/kg BW (LD ₅₀ single dose, ring-neck pheasant)	
	100-200 mg Arsenite/kg BW (single dose, lethal, pig) [=~10-36 g/animal]	
	0.1-2.0 μg Arsenite /embryo (single dose, 34% mortality, chicken)	

^{1 –} reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

In Water

A factor to consider with respect to levels of As (or other metals) in water is that both water and feed (including grazing, which can also include exposure through incidental consumption of soils) represent exposure pathways through consumption. Thus, slightly higher concentrations in water can be tolerated if levels in feed are low (see, for example, CCME guidelines, Olkowski 2009). Remembering also that determination of safe to toxic levels in water is affected by type of animal and form of the As, the range of no-effects levels in drinking water (across all animals and As forms) from this evidence is 0.025 to 0.5 mg/l (Table 3-7). The lowest or sublethal effects level of As ranges from 2.9 to 5.0 mg/l, and the only lethal level summarized here is two orders of magnitude higher, at 500 mg/l. The higher end of the noeffects level, or 0.5 mg/l, might be considered a conservative screening level, and something between this and the low end of the sublethal doses, or 2.9 mg/l, as a threshold level of concern.

Table 3-7. Arsenic compounds toxicity in water.

	Sheep	Cattle	Other
No effects (safe levels)		0.025 mg/l (cattle; or 0.500 mg/l if level in feed is low) (CCME guideline)	0.292 mg arsenite/l (NOAEL- based benchmark; white- tailed deer)
Sublethal	5 mg As/L (cattle and sheep; provides minimum toxic dose of 1 mg As/kg BW to grazing animals in warm weather)	5 mg As/L (cattle and sheep; will provide the minimum toxic dose of 1 mg As/kg BW to grazing animals in warm weather)	2.921 mg arsenite/l (LOAEL- based benchmark; white- tailed deer)
Lethal			500 mg sodium arsenite/l (pig; lethal)

In Soil

The Wildlife Soil Criteria (WSC) and Risk Management Criteria (RMC) summarized in Table 3-7 represent a range of threshold screening values. The WSC includes a soil exposure factor and a soil-plant uptake factor (Ford and Beyer 2014), so these values seem relevant to potential exposure routes of livestock through grazing. Ford and Beyer (2014) indicate that at soil concentrations below the WSC, increased tissue concentrations of metals, as well as biochemical signs of increased exposure may be observed; while at metal concentrations above the WSC, signs of impaired health might be observed. Similarly, RMC's are intended to provide action levels to assist managers in making resource/land management decisions (Ford and Beyer 2014). While the screening levels in Table 3-8 are presented by animal type, the levels are close enough (352 – 431 mg As/kg soil) that the upper values in this range (419 – 431 mg As/kg soil) can be considered a reasonable threshold range.

Table 3-8. Arsenic compounds toxicity in soil.

	Sheep		Other
Safe threshold	353 mg/kg (WSC1)	355 mg/kg (WSC1)	431 mg/kg (WSC ¹ , horse)
Sale tillesiloid	352 mg/kg (RMC ²)	419 mg/kg (RMC ²)	

¹⁻WSC = Wildlife Soil Criteria

3.3.2. Cadmium (Cd)

In Feed (or direct consumption)

Sheep: A relatively wide (10x) range of 'safe' (no-effects) levels of Cd in feed was found, from 0.5 to 5 mg/kg feed (Table 3-9). Most sublethal toxic levels were found to range between 5 and 60 mg/kg, though one study reported sublethal effects at 1 mg/kg feed. This suggests a safe threshold of Cd in feed-stuffs for sheep would be between 0.5 and 1 mg/kg.

² – RMC = Risk Management Criteria

Table 3-9. Cadmium compounds toxicity to sheep.

	Concentration in feed Single	dose ¹ Daily dose
	0.5 mg Cd/kg feed (max feed content, all animals)	
No effects (safe levels)	1 mg Cd/kg in complete feed (max safe level, ruminants (cattle, sheep, goats))	
	≤5 mg/kg in feed (farm ruminants; unlikely to see effects)	
	5 to 30 mg Cd/kg of diet (interferes copper zinc absorption, most animals)	30-60 ppm Cd/day (for 91 days, reduced growth and food intake)
	60 mg Cd/kg diet for 137 days (chronic intoxication)	60 mg Cd/kg diet/day for 137 days (chronic Cd intoxication)
	>40 mg Cd/ kg DM (toxicity)	
Sublethal	> 40 mg of Cd/Kg of DM (parakeratosis, reduction on appetite, body weight gain and testicle development)	
	>30 mg Cd/kg in diet (ruminants; anorexia, reduced growth, decreased milk production and abortion)	
	5 to 60 mg Cd/Kg DM (increased copper in liver and kidney)	
	1 mg Cd/kg in complete feed (max safe level, ruminants (cattle, sheep, goats))	
	(as low as) 1 mg Cd/kg in the diet (range of non-lethal impairments, most animals)	
	5 - 30 mg Cd/kg diet (various sublethal effects; most animals)	

Lethal

 $^{^{1}}$ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Cows/Cattle: The safe range of Cd in feed for cattle is also relatively wide, from 0.5 mg Cd/kg feed to 10 ppm (mg/kg feed) as a maximum tolerable level (Table 3-10). Several of the sublethal and lethal dosages in feed were substantially higher than this range of safe levels (from 160 up to 2,560 mg Cd/kg feed). Because some of these values were for calves and some for adult cattle, it is difficult to use average weights and feeding rates to convert these to, for instance daily doses, for comparison to other study results. Though several of the sublethal doses are relatively high (e.g., 3 g/animal/day or more; 22 g/animal as a single dose], at least one study indicated doses of Cd as low as 1 mg/kg feed could lead to sublethal toxic symptoms (Table 3-10), suggesting that a safe threshold may lie between this value (1 mg/kg feed) and reported maximum safe value of 10 mg/kg feed, or the lower sublethal value of 160 mg/kg feed.

Table 3-10. Cadmium compounds toxicity to cattle

	Concentration in feed	Single dose ¹	Daily dose
	10 ppm (MTL)		
No effects (safe	0.5 mg Cd/kg feed (max feed content, all animals)		
levels)	1 mg Cd/kg in complete feed (max safe level, ruminants (cattle, sheep, goats))		
Sublethal	(as low as) 1 mg Cd/kg in the diet (range of non-lethal impairments, most animals) [~18.8 mg/animal/day]	18 mg Cd/kg BW (calves; chronic Cd intoxication)	15 mg Cd/kg bodyweight daily (feed intake and body weights decreased during the six-week feeding period) [~56.5 g/animal/day]
	160 mg Cd/kg ration (calves; depressed growth rate) [~3.0 g/animal/day]	≥ 30 mg of Cd/Kg BW (toxic dose – health disorders) (~22.6 g/animal)	
Lethal	2,560 mg Cd/kg ration (100% mortality within 8 wks)		
	640 mg Cd/kg ration (25% mortality within 6 wks)		

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Other Animals: The upper no-effects level for Cd in feed reported for white-tailed deer is ~8.8 mg/kg feed (Table 3-11), near the high end of the safe range reported for cattle. The LOAEL for white-tailed deer is 10x this value, or 87.9 mg/kg feed. The only 'safe' value for Cd in feed reported for goats is near the low end of the range (1 mg/kg feed). Overall, the no-effects range for Cd in feed for other animals is comparable to that report for cattle and sheep. And again, similarly to the pattern discussed for cattle and sheep, the levels of Cd resulting in sublethal and lethal effects in other animals is, with one exception, quite a bit higher than the reported safe levels (50 mg/kg feed or higher).

Table 3-11. Cadmium compounds toxicity, other animals.

	Concentration in feed Single dose ¹	Daily dose
	8.787 mg cadmium chloride/kg feed (white-tail deer; NOAEL-based benchmark (food))	0.271 mg cadmium chloride/kg BW/day (NOAEL (estimated); white-tail deer; 2.706 mg/kg/day)
No effects (safe levels)	0.5 mg Cd/kg feed (max feed content, all animals)	
	1 mg Cd/kg in complete feed (max safe level, ruminants (cattle, sheep, goats))	
	87.871 mg cadmium chloride/kg feed (white- tailed deer, LOAEL-based benchmark (food))	2.706 mg cadmium chloride/kg BW/day (LOAEL (estimated); white-tail deer)
Sublethal	50 mg Cd/kg diet for 42 days (pigs; chronic cadmium toxicity) [using 140kg as an average pig weight and consumption rate of 2.5% of BW/day, this would be ~175 mg/animal/day]	
	(as low as) 1 mg Cd/kg in the diet (range of non-lethal impairments, most animals)	

Lethal

In Water

The range of no-effects levels for Cd in drinking water (across all animals and forms of Cd) is 0.08 to 4.1 mg/l (Table 3-12), a relatively wide range. The range of lowest or sublethal effects levels of Cd is also wide, from 1.0 to 41.3 mg/l. The higher variability in the levels presented make recommending a threshold a bit problematic, especially given the overlap between the no-effects and sublethal levels. The lowest sublethal level reported (1 mg Cd/l) is well within the no-effects range reported. Thus, the interval between the highest no-effects level (4.1 mg/l) and the lowest effects level (41.3 mg Cd/l) would be a reasonable screening or threshold level to screen and identify water concentrations of concern.

 $[\]overline{}$ - reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Table 3-12. Cadmium compound toxicity in water.

	Sheep	Cattle	Other
No effects (safe levels)		0.08 mg/l (CCME guideline)	4.132 mg cadmium chloride/l (NOAEL-based benchmark; white-tailed deer)
Sublethal	as low as 1 mg/kg (= 1 mg/l) in drinking water (animals; renal function impairment, hypertension, disturbance of trace mineral metabolism (copper, zinc and manganese), and acute	as low as 1 mg/kg in drinking water (animals; renal function impairment, hypertension, disturbance of trace mineral metabolism (copper, zinc and manganese), and acute	as low as 1 mg/kg in drinking water (animals; renal function impairment, hypertension, disturbance of trace mineral metabolism (copper, zinc and manganese), and acute degenerative damage in the intestinal villi)
	degenerative damage in the intestinal villi)	degenerative damage in the intestinal villi)	41.323 mg cadmium chloride/I (LOAEL-based benchmark; white-tailed deer)
Lethal			

In Soil

The levels of WSC's and RMC's given in Table 3-13 for Cd are similar (12 - 23 mg Cd/kg soil). The upper values in this range, 20 - 23 mg Cd/kg soil can be considered a reasonable threshold range.

Table 3-13. Cadmium compound toxicity in soil.

	Sheep	Cattle	Other
Safe threshold	23 mg/kg (WSC ¹)	20 mg/kg (WSC1)	21 mg/kg (WSC ¹ , horse)
	12 mg/kg (RMC ²)	15 mg/kg (RMC ²)	

¹⁻WSC = Wildlife Soil Criteria

3.3.3. Copper (Cu)

The metabolic processing of Cu can be affected by, among other things, the presence of Zn, making it difficult to determine exact dietary Cu requirements (Ammerman 1969). Sheep and young cattle are more susceptible to Cu toxicity than mature cattle. The pattern of Cu toxicity can start with a period of accumulation, especially in the liver or blood, and progress to 'haemolytic crisis', which can include jaundice, methemoglobin, hemoglobinuria, and ultimately death (Ammerman 1969). Compounds such as sulfate and Mo can reduce body accumulation of Cu; such interactions can affect apparent toxic reactions to particular Cu exposures. Cu and Fe also interact, such that high levels of dietary Fe may depress Cu accumulation, or conversely that Cu deficiency may result in excess Fe accumulation in the liver (Chapmann and Kidder 1964 and Standish et al. 1969 in Ammerman 1969)

² – RMC = Risk Management Criteria

In Feed (or direct consumption)

Sheep: A 'safe' (no-effects) level of Cu for sheep is reported at about 40 mg/kg total diet (Table 3-14). Chronic (sublethal) effects were reported at single doses of 20-110 mg Cu/kg BW, which for an average-weight sheep (assuming 72 kg) would be about 1.4-7.9 g/animal; and at a daily dose of 3.5 mg/kg BW, which would be about 252 mg Cu/animal/day (Table 3-14). This suggests a screening threshold for Cu in feed-stuffs for sheep might lie between 40 and 250 mg/kg.

Table 3-14. Copper compound toxicity to sheep.

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe levels)	35 mg/kg (max permitted level; 88 per cent dry matter (DM)) =~ 40 mg/kg of total diet DM (livestock)		
Sublethal		20 to 110 mg Cu/Kg of BW (acute poisoning) [~1.4-7.9 g/animal]	3.5 mg of copper/kg of BW (chronic poisoning) [~252 mg Cu/animal/day]
Lethal	1.5 mg fed/sheep/ day for 30 days (lethal)	80 - 160 mg per head (lethal)	

^{1 –} reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Cows/Cattle: 'Safe' (no-effects) levels of Cu for cattle range between 15 and 40 mg/kg feed (Table 3-15). For the average weight cow (753kg) eating 2.5% of their body weight per day, this would amount to about 282-753 mg Cu/animal/day. At concentrations at least twice this high, 80-115 mg/kg feed (~1.5-2.2 g/animal/day] consumed over 2-3 months, chronic (sublethal) effects were reported. A daily dose of 3-5 mg Cu/kg BW/day was also reported to result in sublethal to lethal effects. For an average-weight cow, this would be about 2.3-3.8 g/animal/day. This range is similar to the sublethal feed concentrations reported. Single dosages of Cu that are toxic to cattle are much higher than this (Table 3-15). A screening threshold for Cu in feed-stuffs for adult cattle might lie between the upper no-effects levels of 40 mg/kg in feed and lower sublethal concentration of 80 mg/kg feed.

Table 3-15. Copper compound toxicity to cattle.

	Concentration in feed	Single dose ¹	Daily dose
	40 ppm Cu sulfate, Cu chloride (MTL) [~753 mg/animal/day]		
	35 mg/kg (max safe level; non-milking cows)		
No effects (safe levels)	35 mg/kg (88 per cent dry matter (DM)) = $^{\sim}$ 40 mg/kg of total diet DM (livestock)		
	20 ppm (max safe level)		
	15 mg/kg feed (max safe level; milking cows) [~282 mg/animal/day]		
	80 mg of Cu/Kg feed/day for 60 days (poisoning, adult cattle)	20 - 110 mg of copper/kg BW (acute poisoning, calves)	3 - 5 mg Cu/Kg BW/day (chronic poisoning, lethal) [~2.3-3.8 g Cu/animal/day]
Sublethal	115 mg of Cu/Kg feed/day, for 91 days (poisoning of calves)	200 to 400 g copper sulfate or 200 mg copper/Kg BW (acute poisoning, adult cattle) [~150.6 g/animal]	1 to 2 g copper/day (chronic poisoning of calves)
		220 - 880 mg copper/kg BW (lethal)	
Lethal	37.5 mg/kg (lactating cows; chronic long-term (>2-year) feeding; 14% mortality)	mineral mix containing 328 mg of Cu/Kg (high mortality)	
	22.6 mg/kg (dry cows; chronic long-term (>2-year) feeding; 14% mortality)		

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Other Animals: 'Safe' (no-effects) levels of Cu for other animals represents a wide range, from 25 to 170 mg/kg feed (Table 3-16). Sublethal effects are reported for white-tail deer and other animals at concentrations not much higher than the upper 'safe' level (~182 mg/kg feed). Thus, a screening threshold between the upper 'no-effects' level of 170 mg/kg feed and the lower sublethal level of 182 mg/kg feed might be recommended.

Table 3-16. Copper compound toxicity, other animals.

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe levels)	138.6 mg copper sulfate/kg (NOAEL-based benchmark (food); white-tail deer) [assuming a 45 kg deer that eats the same 2.5% BW as other livestock (a random assumption), this would amount to ~156 mg/animal/day]		4.3 mg copper sulfate/kg BW/day (NOAEL (estimated); white-tail deer) [assuming a white-tail deer weighs ~45 kg, this would amount to ~194 mg/animal/day]
	170 mg/kg (max safe level; piglets)		
	25 mg/kg (max safe level; other pigs) [
Sublethal	182.4 mg copper sulfate/kg (LOAEL-based benchmark (food); white-tail deer) [~205.2 mg/animal for a 45 kg deer eating 2.5% BW/day]		5.6 mg copper sulfate/kg BW/day (LOAEL (estimated); white-tail deer) [~252 mg/animal for a 45 kg deer]
Lethal		***************************************	

^{1 –} reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

In Water

The range of no-effects levels reported for Cu in drinking water is broad, from 0.05 to 5.0 mg/l for cattle, to 65.2 mg/l for other animals (white-tailed deer) (Table 3-17). The lowest effects level reported for white-tail deer is only slightly higher than this upper no-effects level, at 85.8 mg/l. As with all the metals, the cooper concentration of concern in water will be affected by the other amounts of Cu consumed in feed or exposure to Cu in soils, as well as by the species of animal under consideration, and may account for the variability in reported values. A threshold range could be considered between the highest no-effects level reported (~65 mg/l Cu) and the lowest effects level (85.8 mg/kg) to screen for Cu concentrations of concern, though the upper safe level reported for cattle, 5 mg/l of Cu in water, would be a more conservative safety threshold.

Table 3-17. Copper compounds toxicity in water.

Sheep	Cattle	Other
No effects (safe levels)	0.05 - 5.0 mg/l (CCME guideline)	65.2 mg copper sulfate/l (NOAEL-based benchmark; white-tailed deer)
Sublethal		85.8 mg copper sulfate/l (LOAEL-based benchmark; white-tailed deer)
Lethal		

In Soil

The levels of WSCs and RMCs given in Table 3-18 for Cu are quite variable among types of animals (Table 3-18). The values for sheep, 86-102 mg Cu/kg soil, are two to four times lower than the values reported for cattle of 281-413 mg/kg. The WSC for horses is almost an order of magnitude higher than that for cattles, 2,013 mg Cu/kg. demonstrates species differences in sensitivity to a particular metal and may also be complicated by the influence of consumption of Cu through other (food/grazing) sources.

Table 3-18. Copper compounds toxicity in soil.

	Sheep	Cattle	Other
Safe threshold	102 mg/kg (WSC¹)	281 mg/kg (WSC¹)	2,013 mg/kg (WSC ¹ , horse)
	86 mg/kg (RMC ²)	413 mg/kg (RMC ²)	

¹⁻WSC = Wildlife Soil Criteria

3.3.4. Iron (Fe)

In Feed (or direct consumption)

Sheep: No study results relevant to the potential toxicity to sheep of Fe in feed was found.

Cows/Cattle: The evidence summarized on safe (no-effects) concentrations in feed or daily doses of Fe to cattle shows a relatively wide spread in estimated safe dosages, from 500 mg/kg, which for an average-weight animal would be an exposure to about 9.4 g/animal/day; down to 750 mg/animal/day (=0.75 g/animal/day) (Table 3-19). There is then another jump to a range of sublethal Fe exposures of about 22.6-60 g/animal/day. A threshold to screen for Fe concentrations in feed of concern should probably fall between the higher no-effects level of 9.4 g/animal/day (or 500 mg/kg feed) and the lower sublethal concentration of 22.6 g/animal/day (or given average BW and feeding rate, about 1,200 mg/kg feed).

² – RMC = Risk Management Criteria

Table 3-19. Iron compound toxicity to cattle.

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe levels)	500 ppm Fe sulfate, Fe chloride (MTL) [~9.4 g/animal/day]		750 mg/day (max safe level)
Sublethal		30 g ferric hydroxide/day (non-lethal - affected milk yield, digestion of herbage, other)	30 mg ferric hydroxide/kg live weight/day (for 7 months; non-lethal effects, e.g., depressed liver and blood copper, caeruloplasmin, and amine oxidase levels) [~22.6 g/animal/day]
		30-60 g ferric hydroxide/day (non-lethal - loss of bodyweight, lowered production of butterfat)	
Lethal			

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Other Animals: Little information on Fe toxicity to other animals was available, except for safe levels for weanling and non-weanling pigs (Table 3-20). The value for non-weanling pigs is similar to the maximum safe level reported above for cattle and is on the low end of the recommended threshold range for cattle.

Table 3-20. Iron compound toxicity, other animals.

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe			250 mg/day (max safe level; weanling pigs)
levels)			750 mg/day (max safe level; non-weanling pigs)
Sublethal			
Lethal			

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

In Water

No information on the potential toxicity of Fe in water to livestock or wildlife was found.

In Soil

No information on the potential toxicity of Fe in soils to livestock or wildlife was found.

3.3.5. Lead (Pb)

In Feed (or direct consumption)

Sheep: No effects levels of Pb in feed for sheep fall between 5 and 100 mg/kg feed (Table 3-21). No information is available on sublethal concentrations for sheep. However, at the least, the higher end of this no-effects level, or 100 mg/kg feed, may represent a reasonable threshold for screening Pb concentrations in food-stuffs for sheep.

Table 3-21. Lead compound toxicity to sheep.

	Concentration in feed	Single dose ¹	Daily dose
No effects	5 mg/kg feed (all animals)		
	100 mg Pb/kg DM of diet (MTL)		
Sublethal			
Lethal			

^{1 –} reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Cows/Cattle: The no-effects concentrations of Pb in feed for cattle is the same as that presented above for sheep, between 5 and 100 mg/kg feed (Table 3-22). The sublethal concentrations are two to three times higher than this (200-300 mg/kg feed). This is equivalent to about 5.03 – 7.53 g/animal/day (based on assumptions regarding average weight of cattle and average feeding rates). Single-dose sublethal levels are also quite variable, ranging from levels comparable to the daily exposures from feed (more or less 4-5 g/animal), to substantially higher doses, equivalent to about 300-600 g Pb/animal (Table 3-22).

Table 3-22. Lead compound toxicity to cattle.

	Concentration in feed	Single dose ¹	Daily dose
	100 ppm (MTL)		
No effects (safe	5 mg/kg feed (all animals)		
levels)	100 mg Pb/kg DM of diet (MTL) [~2.5 g Pb/animal/day]		
	200 to 300 mg of Pb/Kg of DM diet (chronic poisoning) [~5.03 – 7.53 g/animal/day]	400 to 600 mg of Pb/Kg BW (acute poisoning, young cattle) [301.2 g/animal to 451.8 g/animal]	4.5 mg of Pb/Kg of BW (chronic poisoning) [~3.4 g/animal/day]
Sublethal		600 to 800 mg of Pb/Kg BW (acute poisoning, adult cattle) [451.8 g/animal to 602.4 g/animal]	
		6 to 7 mg of Pb/ Kg BW (chronic poisoning) [4.5 to 5.3 g/animal]	
		200 mg Pb/kg BW single dose (lethal)	
Lethal		200 - 400 mg of Pb/Kg of BW (single dose, calf mortality)	
		10 to 100 g of lead acetate (single dose, adult cattle mortality)	

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Other Animals: Safe consumption levels of Pb for other animals was variable, from 5-73 mg Pb/kg feed (about 5.6-82 mg/animal/day for a 45 kg deer), or 2.24 mg/kg BW/day (about 101 mg/animal/day). A sublethal Pb level in feed for other animals (deer in this case) is 727.78 mg/kg feed (or about 820 mg/animal/day). Sublethal single dosage levels were higher than this (Table 3-23).

Table 3-23. Lead compound toxicity, other animals.

	Concentration in feed	Single dose ¹	Daily dose
No effects	72.88 mg Lead acetate /kg feed (NOAEL-based benchmark (food); white- tailed deer) [~82 mg/animal/day]		2.24 mg Lead acetate/kg BW/day (NOAEL (estimated); white-tailed deer) [~101 mg/animal for an average 45 kg deer]
	5 mg/kg feed (max safe content, all animals) [~5.6 mg/animal]		
	728.78 mg Lead acetate /kg feed (LOAEL-based benchmark (food); white- tailed deer) [~820 mg PB/animal/day]	100 mg of Pb/Kg of BW (horse, chronic poisoning) [~69 g/animal for an average-weight 690 kg horse]	22.44 mg Lead acetate/kg BW/d (LOAEL (estimated); white-tailed deer) [~1.01 g/animal]
Sublethal		33 to 66 mg of Pb/Kg of BW (pig, chronic poisoning) [4.62-9.24 g/animal]	
		400 mg of Pb/Kg (goat, chronic poisoning)	

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

In Water

Based on results for cattle and other animals (white-tailed deer), water concentrations of Pb from 0.1 mg/l to as high as 34.3 mg/l should be safe, while 342.7 mg/l is reported as the lowest level of Pbthat will result in sublethal effects (Table 3-24). A screening level for Pb in water between these values (34-340 mg/l) could be used.

Table 3-24. Lead compound toxicity in water.

Shee	ep Cattle	Other
No effects (safe levels)	0.1 mg/l (CCME guideline)	34.27 mg lead acetate/l (NOAEL-based benchmark; white-tailed deer)
Sublethal		342.72 mg lead acetate/l (LOAEL-based benchmark; white-tailed deer)
Lethal		

In Soil

The WSC's and RMC's given for Pb levels in soil in Table 3-25 are quite variable among types of animals and between the two metrics (Table 3-25). For sheep, the RMC is only 203 mg Pb/kg soil, while the WSC

is 1,146 mg/kg (Table 3-25). For cattle these values are similar – 244 and 1,127 mg Pb/kg, respectively. However, for horses the WSC is only 142 mg Pb/kg.

Table 3-25. Lead compound toxicity in soil.

	Sheep	Cattle	Other
Safe threshold	1,146 mg/kg (WSC1)	1,127 mg/kg (WSC1)	142 mg/kg (WSC¹, horse)
Sale tillesilolu	203 mg/kg (RMC ²)	244 mg/kg (RMC ²)	

¹⁻WSC = Wildlife Soil Criteria

3.3.6. Nickel (Ni)

In Feed (or direct consumption)

Sheep: No study results relevant to the potential toxicity to sheep of Ni in feed was found.

Cows/Cattle: A no-effects Ni concentration in feed of 100 ppm (=100 mg Ni/kg feed) was reported (Table 3-26).

Table 3-26. Nickel compound toxicity to cattle.

	Concentration in feed Single dose ¹ Daily dose
No effects (safe levels)	100 ppm Ni (MTL)
Sublethal	
Lethal	

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Other Animals: The no-effects level of Ni in feed for other animals (white-tailed deer in this case) is 364 mg Ni/kg feed (about 410 mg/animal/day), or 11.22 mg Ni/kg BW/day (about 505 mg/animal/day) (Table 3-27). The sublethal (lowest effects) levels for white-tailed deer were twice these levels, and the sublethal dietary concentration for chicks was similar to the LOAEL-derived dietary concentration for white-tails (Table 3-27).

Table 3-27. Nickel compound toxicity, other animals.

	Concentration in feed	Single dose ¹ Daily dose
No effects (safe levels)	364.39 mg nickel sulfate hexahydrate/kg feed (NOAEL-based benchmark (food); white-tailed deer) [~410 mg Ni/animal/day]	11.22 mg nickel sulfate hexahydrate/kg BW/day (NOAEL; white-tailed deer) [~505 mg Ni/animal/day]
Sublethal	700 ppm in diet (chicks; non-lethal)	22.44 mg nickel sulfate hexahydrate/kg BW/day (LOAEL (estimated); white-tailed deer) [~1,010 mg/animal/day]

² – RMC = Risk Management Criteria

Table 3-27 (continued).

	Concentration in feed Si	ngle dose ¹ Daily dose
	728.78 mg nickel sulfate hexahydrate /kg feed (LOAEL-based benchmark (food); white-tailed deer) [~820 mg/animal/day]	1.2 ppm fed daily, days 1-90 (mallard ducklings; lethal and sublethal)
Lethal	1.1 g nickel sulfate/kg BW (chickens; mortality, anemia)	

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

In Water

Based on results for cattle and other animals (white-tailed deer), water concentrations of Ni from 1.0 mg/l to 171.36 mg/l should be safe, while 342.72 mg/l is reported as the lowest level of Ni that will result in sublethal effects (Table 3-28). A screening level for Ni in drinking water for livestock and wildlife between these values (171-340 mg Ni/l) could be used as a screening range.

Table 3-28. Nickel compound toxicity in water.

Sheep	Cattle	Other
No effects (safe levels)	1.0 mg/l (CCME guideline)	171.36 mg/l (NOAEL-based benchmark; nickel sulfate hexahydrate; white-tailed deer)
Sublethal		342.72 mg/l (LOAEL-based benchmark; nickel sulfate hexahydrate; white-tailed deer)
Lethal		

In Soil

No information on the potential toxicity of Ni in soils to livestock or wildlife was found.

3.3.7. Zinc (Zn)

In Feed (or direct consumption)

Sheep: A no-effects level for Zn to sheep is 500 mg/kg feed (or less) (Table 3-29). A range of sublethal effects are reported at Zn concentrations in feed from 1,000 to 1,700 mg Zn/kg feed. Thus, with respect to sheep, screening for Zn at 500 mg/kg (ppm) or up to 1,000 ppm would seem reasonable.

Table 3-29. Zinc compound toxicity to sheep.

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe levels)	<500 ppm in diet (no effects)		
	1,000-1,500 ppm in diet (reduced feeding and weight gain)		
Sublethal	1,000 mg Zn/Kg of diet (reduced feed efficiency and weight gain)		
	1,500 mg Zn/Kg diet (reduced food intake)		
	1,700 mg Zn/Kg of diet (perversion of appetite)		
Lethal			

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Cows/Cattle: No-effects concentrations of Zn in feed for cattle range from 100-500 mg/kg feed (Table 3-30). A range of sublethal effects on cattle from Zn in feed occurred at 500-2,000 mg Zn/kg feed, a relatively wide range. These values are similar to those reported for sheep (above).

Table 3-30. Zinc compounds toxicity to cattle.

	Concentration in feed	Single dose ¹	Daily dose
	500 ppm in feed (MTL)		
No effects (safe levels)	500 mg/kg (ppm) feed (Safe)		
	100 mg Zn/kg (cattle; safe level)		
	900 mg/kg (ppm) feed (non- lethal impacts)		30-40 mg/kg (severe chronic poisoning, 1 month; calves)
	1,700 ppm in diet (more sever non-lethal effects)		
	500 mg Zn/kg DM (non- lethal)		
Sublethal	700 mg Zn/Kg diet (reduced feed intake and body weight, nitrogen digestibility and hematocrit)		
	900 to 1 000 mg Zn/Kg diet (decreased growth, nitrogen digestibility and hematocrit)		

Table 3-30 (continued).

	Concentration in feed	Single dose ¹	Daily dose
	2,000 mg Zn/kg of diet (decreased milk production)	
Lethal	3,000 to 7,300 mg/kg in roughage (feed) DW (mortality)	150 g zinc oxide (lethal)	75 g zinc oxide during 3 to 4 days (probably lethal)

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

Other Animals: The range of no-effects (safe) concentrations of Zn to other animals is relatively wide, 150-1,000 mg Zn/kg feed (Table 3-31), reflecting essential differences between weanling and adult pigs. Sublethal effects were reported to occur at Zn concentrations from 1,000-4,000 mg Zn/kg feed.

Table 3-31. Zinc compound toxicity, other animals.

	Concentration in feed	Single dose ¹	Daily dose
No effects (safe	1,000 ppm in diet (no effect, weanling pigs)		
levels)	150 mg Zn/kg (safe level; pigs)		
	1,000 ppm in diet (depresses growth, weanling pigs)		
Sublethal	4,000-8,000 ppm in diet (high mortality, weanling pigs)		
	4,000 mg Zn/kg diet (pigs; reduced growth)		
Lethal			

¹ – reported as total dose, or as dose per body weight (BW) of the animal, for which average animal weight used to estimate a total dose (or a range).

In Water

A single safe level of Zn in drinking water is reported for cattle as 50 mg/l (Table 3-32). With no additional information, a threshold cannot be defined from this value.

Table 3-32. Zinc compounds toxicity in water.

She	eep Cattle Other
No effects (safe levels)	50 mg/l (CCME guideline)
Sublethal	
Lethal	

In Soil

Estimates of safe levels for sheep of Zn in soils range from 545-992 mg/kg (Table 3-33). For cattle these levels are 1,082-1,600 mg Zn/kg soil; and for other animals (horses in this case) it is 1,000-1,674 mg/kg. Sublethal toxic levels for horses are higher, at 3,600-8,500 mg/kg (Table 3-33). These results suggest a threshold range between 1,000-3,600 mg Zn/kg soil to screen for Zn levels of concern.

Table 3-33. Zinc compounds toxicity in soil.

	Sheep	Cattle	Other
	992 mg/kg (WSC1)	1,600 mg/kg (WSC1)	1,674 mg/kg (WSC¹, horse)
Safe threshold	545 mg/kg (RMC²)	1,082 mg/kg (RMC²)	1,300 - 20,000 ppm (exposure in pastures, horses)
			1,000 ppm (horses; back- calculated from NAOEL)
Sublethal			3,600 - 5,400 ppm a day (toxic concentrations; horses)
			8,500 ppm (horses; back- calculated from LAOEL)

¹⁻WSC = Wildlife Soil Criteria

3.3.8. Toxicity Summary

Table 3-34 is summary of identified thresholds of concern for 7 metals in feed, water, and soils, across a range of livestock and wildlife obtained from literature.

² – RMC = Risk Management Criteria

Table 3-34. Summary of identified thresholds of concern for 7 metals in feed, water and soils, across a range of livestock and wildlife.

Metal	Feed-stuffs	Water	Soil
Arsenic	2-250 mg As/kg feed (or higher*)	0.5-2.9 mg As/l	419 431 mg As/kg soil
Cadmium	1-160 mg Cd/kg feed	4.1-41.3 mg Cd/l	20–23 mg Cd/kg soil
Copper	oper 170-182 mg Cu/kg feed 65-85 mg Cu/l		281-413 mg Cu/kg soil (or as high as 2,000 mg Cu/kg soil)
Iron	500-1,200 mg Fe/kg feed		
Lead	100-200 mg Pb/kg feed (up to 730 mg Pb/kg feed)	34-340 mg Pb/l	1,127-1,146 mg Pb/kg soil (upper safe levels, not necessarily a threshold of concern)
Nickel	>100mg Ni/kg feed; 360-720 mg Ni/kg feed	171-340 mg Ni/l	
Zinc	500 - 1,000 mg Zn/kg feed	50 mg/L(a safe level, not a threshold of concern)	1,000-3,600 mg Zn/kg soil

^{*} many of the sublethal effects of As were presented as single doses, and there was a wide range across different animal types and forms of arsenic

3.4. Metals Bioaccumulation in Beef

The bioaccumulation values used in this report are those published by Oak Ridge National Laboratory (ORNL) (Baes et al. 1984). These values have been used by U.S. EPA in risk-based assessments and represent default element-specific bioaccumulation estimates that have wide applicability. The beef transfer factors represent the fraction of daily elemental intake in feed which is transferred to and remains in a kilogram of beef until slaughter. The values were determined by Baes et al. (1984) from a review of literature or determined from elemental systematic assumptions

Table 3-35. Ingestion-to-Beef Transfer Factor

Metal	Ingestion-to-Beef Transfer Factor (unitless)
Aluminum	0.0015
Antimony	0.001
Arsenic	0.002
Barium	0.00015
Beryllium	0.001
Cadmium	0.00055
Chromium	0.0055
Cobalt	0.02
Copper	0.01
Iron	0.02
Lead	0.0004
Manganese	0.0004

Table 3-35 (continued).

Metal	Ingestion-to-Beef Transfer Factor (unitless)
Mercury	0.25
Molybdenum	0.006
Nickel	0.006
Selenium	0.015
Silver	0.003
Thallium	0.04
Vanadium	0.0025
Zinc	0.1

4. Current Regulatory Human Health Water Quality Criteria or Guidelines for Metals in Water

This section summarizes relevant information regarding U.S. EPA's derivation of water quality standards for human health. This section also presents laboratory toxicity analyses that examined growth of crop species of interest in several different soil samples and indicator species survival and growth in several river sediment samples provided by the Navajo Nation. These results, along with concurrent metal risk assessment analyses conducted by Tetra Tech for Utah DEQ and fish tissue metal analyses for the San Juan River and the Navajo Nation, are presented to provide context in terms of water and soil concentrations encountered due to the mine spill.

4.1. Overview of U.S. EPA Human Health Ambient Water Quality Criteria (AWQC) for Pollutants

U.S. EPA's recommended ambient water quality criteria (AWQC) for human health are scientifically derived numeric values that U.S. EPA has determined will adequately protect human health from the adverse effects of pollutants in ambient water. In 2015, U.S. EPA updated its national recommended water quality standards for human health for 94 chemical pollutants to reflect the latest scientific information and U.S. EPA policies, including updated fish consumption rate, body weight, drinking water intake, health toxicity values, bioaccumulation factors, and relative source contributions (U.S. EPA 2015).

Section 304(a)(1) of the Clean Water Act (CWA) requires U.S. EPA to develop and publish, and from time to time revise, recommended criteria for the protection of water quality that accurately reflect the latest scientific knowledge. Water quality criteria developed under section 304(a) are based solely on data and scientific judgments on the relationship between pollutant concentrations and environmental and human health effects. Section 304(a) criteria do not reflect consideration of economic impacts or the technological feasibility of meeting pollutant concentrations in ambient water (U.S. EPA 2015).

U.S. EPA's recommended section 304(a) criteria provide technical information for states and authorized tribes⁴ to consider and use in adopting water quality standards that ultimately provide the basis for assessing water body health and controlling discharges of pollutants into waters of the United States. Under the CWA and its implementing regulations, states and authorized tribes are required to adopt water quality criteria to protect the designated uses of waters (e.g., public water supply, aquatic life, recreational use, industrial use). U.S. EPA's recommended water quality criteria do not substitute for the CWA or regulations, nor are they regulations themselves. Thus, U.S. EPA's recommended criteria do not impose legally binding requirements. States and authorized tribes may adopt, where appropriate, other scientifically defensible water quality criteria that differ from these recommendations (U.S. EPA 2015).

The equations for deriving human health AWQC for noncarcinogenic effects and carcinogenic effects are presented as Eqs. 1 and 2. U.S. EPA derives recommended human health AWQC based on the consumption of both water and aquatic organisms (Eq. 1) and based on the consumption of aquatic organisms alone (Eq. 2). The use of one criterion over the other depends on the designated use of a particular water body or water bodies (i.e., drinking water source and/or fishable waters). U.S. EPA

⁴ The term *states* means the 50 states, the District of Columbia, the Commonwealth of Puerto Rico, the Virgin Islands, Guam, American Samoa, and the Commonwealth of the Northern Mariana Islands. The term *authorized tribe* or *tribe* means an Indian tribe authorized for treatment in a manner similar to a state under CWA section 518 for the purposes of section 303(c) water quality standards.

recommends applying organism-only AWQC (Eq. 2) to a water body where the designated use includes supporting fishable uses under section 101(a) of the CWA but the water body is not a drinking water supply source (e.g., non-potable estuarine waters that support fish or shellfish for human consumption) (U.S. EPA 2000a).

U.S. EPA recommends including the drinking water exposure pathway for ambient surface waters where drinking water is a designated use for the following reasons: (1) drinking water is a designated use for surface waters under the CWA, and therefore criteria are needed to ensure that this designated use can be protected and maintained; (2) although they are rare, some public water supplies provide drinking water from surface water sources without treatment; (3) even among the majority of water supplies that do treat surface waters, existing treatments might not be effective for reducing levels of particular contaminants; and (4) in consideration of the Agency's goals of pollution prevention, ambient waters should not be contaminated to a level where the burden of achieving health objectives is shifted away from those responsible for pollutant discharges and placed on downstream users that must bear the costs of upgraded or supplemental water treatment (U.S. EPA 2000a).

The equations for deriving the criteria values are as follows (U.S. EPA 2000a):

For consumption of water and organisms:

AWQC (
$$\mu$$
g/L) = toxicity value (mg/kg-d) × BW (kg) × 1,000 (μ g/mg)⁵ (Eq. 1)
DI (L/d) + $\sum_{i=2}^{4}$ (FCR_i (kg/d) × BAF_i (L/kg))

For consumption of organisms only:

AWQC (
$$\mu$$
g/L) = toxicity value (mg/kg-d) × BW (kg) × 1,000 (μ g/mg)⁶ (Eq. 2)

$$\sum_{i=2}^{4} (FCR_i (kg/d) \times BAF_i (L/kg))$$

Where:

AWQC = ambient water quality criteria

toxicity value =RfD x RSC (mg/kg-d) for noncarcinogenic effects

or

10⁻⁶/CSF (kg-d/mg) for carcinogenic effects⁷

RSC = relative source contribution (applicable to only noncarcinogenic and nonlinear low-

dose extrapolation for carcinogenic effects)

BW = body weight

DI = drinking water intake

4

 $\sum_{i=2}^{\infty}$ = summation of values for aquatic trophic levels (TLs), where the letter *i* stands for the

TLs to be considered, starting with TL2 and proceeding to TL4

FCR_i = fish consumption rate for aquatic TLs 2, 3, and 4 BAF_i = bioaccumulation factor for aquatic TLs 2, 3, and 4

U.S. EPA rounds AWQC to the number of significant figures in the least precise parameter as described in the 2000 Methodology (U.S. EPA 2000a, section 2.7.3).

 $^{^{5}}$ 1,000 μ g/mg is used to convert the units of mass from milligrams to micrograms.

 $^{^{6}}$ 1,000 $\mu g/mg$ is used to convert the units of mass from milligrams to micrograms.

⁷ 10⁻⁶ or 1 in 1,000,000 risk level for the general population.

Although U.S. EPA's (2000a) methodology was developed for human consumption of water and aquatic organisms, it could be adjusted for livestock consumption of water and feed, as another option for evaluating appropriate criteria for protection of the livestock watering designated use. Currently, U.S. EPA has not published updated human health water quality criteria for metals.

4.2. Summary of Available Information Regarding Metal Bioaccumulation and Biomagnification via the Aquatic Food Chain

4.2.1. Navajo Fish Tissue Study

In 2015, the plume from the Gold King Mine (GKM) waste water release flowed through Navajo Nation lands, subjecting downstream waters to high metal concentrations. Concerns remained regarding possible resuspension and remobilization of metals in sediments, and latent exposures to aquatic life or humans. The Navajo Nation Environmental Protection Agency (NNEPA) recognized the importance of recreation in the San Juan River basin, including fishing, and the potential exposure of humans to contaminants through fish consumption. It is because of that recreational importance and the possibility of latent human exposure to metal contamination that NNEPA authorized the 2017 San Juan River Fish Tissue Contaminant Study. The goal of the study was to provide a screening level assessment of metals in fish fillet tissue to help identify the prevailing human health risk associated with fish consumption subsequent to the GKM spill. The study was not designed to determine causes or locate sources of fish tissue contamination. Channel Catfish (*Ictalurus punctatus*) were selected as an indicator species based on their ecology, their sportfish status and human consumption potential, and their relative abundance in the river.

A total of 10 composite fish samples (five fish in each composite -- 50 total fish) were collected in April 2017. Sampling occurred in two distinct river segments – an upstream reach in New Mexico and a downstream reach in Utah. The fillet composites were analyzed for a suite of 25 metals (see Table 4-1 and Appendix Tables A-5 -A-7). Results showed that:

- Nine of the 25 target metals were detected in at least one fillet fish tissue composite.
- Six metals (Cu, Mg, Hg, potassium (K), sodium (Na), and Zn) were detected in all composites.
- Average concentrations of Cu in fish fillets were similar to those from previous San Juan River fish tissue surveys (from between 1993 and 2000).
- Average levels of Mg and Zn were lower in 2017 than in previous studies.
- Total Hg was the only frequently detected metal that was higher in the 2017 composites than in samples from previous studies.
- Hg concentrations in Channel Catfish fillet tissue collected during 2017 were below U.S. EPA's 0.3 mg/Kg tissue-based water quality criterion.

United States Environmental Protection Agency (U.S. EPA) risk-based fish consumption limits are published and available for four of the target metals -- As, Cd, Hg, and Se. The human health screening value applied for Hg was the U.S. EPA fish tissue-based water quality criterion for methylmercury and is the same threshold used by the states of New Mexico and Utah in their fish consumption advisory programs. All fillet results from the 2017 San Juan River collections were below the Hg criterion. As, Cd, and Se concentrations in fillets were all below the method reporting limits; however, the analytical methods did not enable detection down to levels that allowed consideration of all consumption categories. Because of that, it is not possible to make fish consumption recommendations based on

those chemicals at this time without new (more sensitive) analytical methods and further data collection.

The 2017 fillet tissue results indicate that human health risk from recreational consumption of San Juan River fish (with respect to metal concentrations) is low. It is important to note that published U.S. EPA consumption advice and human health benchmarks were applied, which may not reflect the consumption patterns of selected local populations or a subsistence fishing community; however, they are appropriate (based on San Juan River Fish Tissue Study goals) for a screening level assessment of fish tissue contaminants. The results presented here provide current [2017] information on metals in San Juan River fish tissue as well as baseline data for any future studies of temporal trends.

4.2.2. Other Relevant Fish Tissue Information from the Literature

Metal accumulation in fish is a global public health concern, because the consumption of contaminated fish accounts for the primary exposure of humans to toxic metals. For this literature review, Tetra Tech identified body burdens of several metals, including Cu, Cd, As, Zn, Fe, and Ni in various fish species, some of which are relevant to the San Juan River and Lake Powell. Reliable data were obtained for the following species: Channel Catfish (*Ictalurus punctatus*), Carp (*Cyprinus carpio*), Bluehead Sucker (*Catostomus discobolus*), Brown Trout (*Salmo trutta*), Flannelmouth Sucker (*Catostomus latipinnis*), Speckled Dace (*Rhinichthys osculus*), and Rainbow Trout (*Oncorhynchus mykiss*).

As shown in Table 4-1, metal tissue concentrations in fish varies with the species and probably depends on many species-specific factors such as sex, age, size, reproductive cycle, swimming pattern, feeding behavior, and geographical location (McIntyre & Beauchamp 2007). Data for Fe and, to some extent, Ni tissue levels, are generally unavailable for many of the fish species reviewed. This is probably due in part to greater research interest in metals that are known to be toxic at fairly low concentrations and have been observed in fish tissues in other studies. Zn had some of the highest tissue concentrations in several fish species (Table 4-1) which may reflect higher concentrations of this metal in the river than other metals evaluated. However, none of the tissue concentrations reported are likely to be toxic to wildlife or humans.

Bioaccumulation is the net result of the interaction of uptake, storage, and elimination of a chemical (Perera et al., 2015). However, differences in metal accumulation between species may be related to living and feeding habits. Overall, species in relatively lower trophic levels are exposed to comparatively lower contamination, although plants can accumulate metals in high levels (Terra et al., 2008). On the other hand, fish species of higher trophic levels (carnivores/piscivores) are prone to accumulate metals to higher levels. This trend is somewhat borne out by the data for some metals in Table 4-2 however there are many exceptions. For example, Gray (2002) concluded that metal biomagnification in aquatic food chains is an exception rather than the rule among metals and metalloids. Unambiguous evaluations of metal biomagnification in nature are rare because metal concentrations in whole-body prey are often compared with those in a predator's specific tissues without knowledge of the bioaccumulation processes (Croteau et al., 2005).

Table 4-1. Summary of literature fish tissue concentrations observed for several metals of concern in fish species that are relevant to the San Juan River and Lake Powell. dw = dry weight, ww = wet weight

Species	Metal	Body burden	Notes
	copper	2.40 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	cadmium	ND (Not Detected)	NNEPA 2017
Channel catfish	arsenic	0.21 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	zinc	73.4 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	iron	4.3-7.4 mg kg ⁻¹ ww	NNEPA 2017
	nickel	0.052 -0.28 mg kg ⁻¹ ww	NNEPA 2017
	copper	4.34 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	cadmium	0.01 mg kg ⁻¹ dw	O'Brien, 1987
Carp	arsenic	0.21 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	zinc	183.7 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	nickel	0.1 mg kg ⁻¹ dw	O'Brien, 1987
Bluehead sucker	copper	2.75 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	cadmium ¹	0.02 – 3.47 mg kg ⁻¹ dw	Guenzel et al., 2018
	arsenic	0.48 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	zinc	50.9 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	copper	4.74 mg kg ⁻¹ dw	Simpson and Lusk, 1999
Dunis tunis	cadmium	0.1 mg kg ⁻¹ dw	Guenzel et al., 2018
Brown trout	arsenic	0.24 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	zinc	84.2 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	copper	2.59 mg kg ⁻¹ dry weight	Simpson and Lusk, 1999
Flannelmouth	cadmium ¹	$0.02 - 47.41 \mathrm{mg kg^{-1}}$	Guenzel et al., 2018
sucker	arsenic	0.21 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	zinc	50.3 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	copper	3.65 mg kg ⁻¹ dw	Simpson and Lusk, 1999
Speckled dage	cadmium²	$0.01 - 0.02 \; \mathrm{mg \; kg^{-1} dw}$	Guenzel et al., 2018
Speckled dace	arsenic	0.35 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	zinc	164.1 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	copper	6.29 mg kg ⁻¹ dw	Simpson and Lusk, 1999
Rainbow trout	arsenic	0.31 mg kg ⁻¹ dw	Simpson and Lusk, 1999
	zinc	81.4 mg kg ⁻¹ dw	Simpson and Lusk, 1999

¹ Values represent March 2017 (first value) and August 2016 (second value) taken from liver

² Values represent March 2017 (first value) and August 2016 (second value) taken from muscle

Table 4-2. Trophic levels and main dietary items for select fish species relevant to the San Juan River and Lake Powell.

Species	Trophic level	Classification	Diet
Channel catfish	3.4 – 4.16	Carnivore	Animals (fish and invertebrates)
Carp	3.05	Omnivore	Detritus, plant, zoobenthos
Bluehead sucker	2.8 1	Omnivore	Detritus, benthic invertebrates
Brown trout	3.80	Carnivore	Nekton (fish) and zoobenthos
Flannelmouth sucker	2.8 1	Omniovre	Detritus, benthic invertebrates
Speckled dace	2.93	Omnivore	plants/detritus+animals
Rainbow trout	3.53 – 4.08	Carnivore	Zoobenthos, nekton

¹ Based on trophic level of closest relatives (*Catostomus* sp.)

4.2.3. Laboratory Soil and Sediment Toxicity Study

Tetra Tech conducted U.S. EPA-approved sediment and soil toxicity tests for the Navajo Nation to help inform the water quality standards process and provide current information regarding potential toxicity of different soil and sediment samples. These soils and sediments were selected as part of the assessment of the San Juan River (SJR) using samples from the SJR and surrounding tributaries that are representative of sediments and soils that are affected by water used for agricultural crop. Terrestrial plants and freshwater amphipods were exposed to terrestrial soils and sediments, respectively, for the assessment of lethal (i.e., survival or germination) and sub-lethal (i.e., length, weight, and/or reproduction) effects.

Samples Used in Testing

Soil

Soil samples were collected by Navajo personnel and consisted of various soils farmed. Table 4-3 summarizes the soils used in this study.

Table 4-3. Summary of soils collected by Navajo Nation personnel and used in soil toxicity evaluations.

Area	Soil Unit	Unit Name	Sample Label
	As	Apishapa clay	Soil-AS-01
Upper Fruitland- San Juan Area	Tp/Tt	Turley clay loam/Turley clay loam, wet	Soil-TP-01
Juli Judii / II Cu	Fu/Fr	Fruitland loam/Fruitland sandy loam	Soil-FR-01
	200	Tocito silt loam	Soil-200-01
tta da ala taman	200	Tocito siit ioani	Soil-200-02
Hogback-Lower Shiprock	270	Fruitland sandy clay loam	Soil-270-01
3, mpr ock	295/290	Mesa sandy clay loam, wet/Mesa clay	Soil-295-01
	233/230	loam, wet	Soil-295-02
Cudei	157 Werjo, saline-Werjo loams		Soil-157-01
Utah AV		Aquic Ustifluvents-Typic Fluvaquents association	Soil-AV-01

Sediment

Sediment samples were collected by Navajo personnel and consisted of various sediments found in the San Juan River, tributaries, and canals in the region. Table 4-4 summarizes the sediment samples used in this study.

Table 4-4. Summary of sediments collected by Navajo Nation personnel and used in sediment toxicity evaluations.

Area	Unit Name	Sample Label
	San Juan River at Nenahnezad	10SANJUANR38
San Juan	San Juan River at Area 7 (downstream from Shiprock)	10SANJUANR26
River	San Juan River at Four Corners	02SANJUANR06
	San Juan River at Montezuma Creek	02SANJUANR07
Tributaries	Chaco River near mouth	06CHACORIV04
indutaries	Mancos River at mouth	07MANCOSRI01
	Fruitland Canal at first bridge	10FRUCANAL40
levication	Fruitland Canal several miles from head gate	10FRUCANAL45
Irrigation Canals	Hogback Canal between head gate and first waste way	10HOGBACKC43
	Hogback Canal several miles from head gate	10HOGBACKC44

Methods

Soil Toxicity

Soil toxicity tests were conducted using four different plant species including corn (*Zea mays*), squash (*Curcurbita pepo*), alfalfa (*Medicago sativa*), and melon (*Cucumis melo*) following methods in ASTM (2014). Seeds were obtained from Navajo staff. Targeted test length was 2x the time allotted for control germination or 15 days. According to USDA germination standards

(http://www.webgrower.com/information/seed_germ_standards.html) the percent germination for corn and squash is 75% and for alfalfa and melon is 70%. These were the target germination rates that dictated the length of the test. Corn and melon reached the required percent germination in 5 and 7 days, respectively, and these tests were terminated at 10 and 14 days, respectively. Alfalfa and squash did not reach the required percent germination rate, however sufficient germination was obtained to derive statically valid endpoints. Those tests were terminated on Day 15.

Endpoints measured in the soil toxicity tests with respect to comparison to the controls include: % germination, mean shoot length (mm), mean root length (mm), mean total dry weight (mg), mean shoot weight (mg), and mean root weight (mg).

Sediment Toxicity

Sediment toxicity tests were conducted using the freshwater amphipod, *Hyalella azteca*, following methods in U.S. EPA (2000b). The 42-day test consisted of a 28-day exposure to sediment and a 14-day post-sediment exposure in laboratory water. Test organisms were placed in twelve (12) replicate beakers of sediment with laboratory culture water as overlying water. Overlying water was renewed

twice daily as per the test method and each beaker was fed 1.0 mL of a mixture of yeast, trout chow, and cerophyll grass (YTC) daily. After 28-days of exposure to the sediment, test organisms from four replicates were counted, dried for 24 hours at 100°C and weighed. Test organisms from the additional eight replicates were removed from the sediment and placed in beakers with only overlying laboratory water. These test organisms were evaluated after 7 days (35 days total test length) for survival and reproduction and after 14 days (42 days total test length) for survival, reproduction, and growth.

Endpoints measured in the sediment toxicity tests with respect to comparison to the controls included: 28-day survival (%), 35-day survival (%), and 42-day survival (%); 28-day growth and biomass (mg), 42-day growth and biomass (mg); and 42-day reproduction per female (young/female).

Soil Chemistry

Fully-homogenized soil subsamples were sent to ALS Environmental in Kelso, WA for the analysis of total solids (EPA 160.3), acid-volatile sulfides (EPA 821/R-91-100), total organic carbon (EPA 9060), metals (EPA 6020A), and Hg (EPA 7471B).

Sediment Chemistry

Fully-homogenized sediment sub-samples were sent to ALS Environmental in Kelso, WA for the analysis of total solids (EPA 160.3), pH (EPA 9045C), particle size (ASTM D422M), metals (EPA 6020A), and Hg (EPA 7471B).

Results

Soil Toxicity

Several soil samples resulted in significantly less germination with respect to the controls as follows:

- 2 samples resulted in significantly less corn germination than controls (Soil-295-01 and Soil-270-01) (Table 4-5)
- 4 samples resulted in significantly less melon germination than controls (Soil-157-01, Soil-270-01, Soil-FR-01, and Soil-AV-01) (Table 4-6)
- all samples had the same or better alfalfa germination than controls (Table 4-7)
- 6 samples resulted in significantly less squash germination than controls (Soil-295-01, Soil-270-01, Soil-200-01, Soil-FR-01, Soil-AS-01, and Soil-AV-01) (Table 4-8)

Multiple soil samples produced plants with significantly shorter shoots and roots when compared to the controls as follows:

- 2 samples produced shorter corn shoots (Soil-295-01 and Soil-270-01)
- 7 samples produced shorter corn roots (Soil-157-01, Soil-295-01, Soil-270-01, Soil-TP-01, Soil-FR-01, Soil-AS-01, and Soil-AV-01)
- Only one sample (Soil-270-01) produced significantly shorter melon shoots
- 3 samples (Soil-157-01, Soil-270-01, and Soil-AV-01) produced significantly shorter melon roots
- 3 samples (Soil-295-01, Soil-270-01, and Soil-200-01) produced shorter squash shoots
- 8 samples produced shorter squash roots (Soil-157-01, Soil-295-01, Soil-270-01, Soil-200-01

Overall there were no significant effects on mean total dry weight, mean root weight or mean shoot weight with any of the soil samples except for Soil-270-01 (mean total dry weight, mean root weight and mean shoot weight) and Soil-200-01 (mean total dry weight) and squash (Table 4-8). The analysis of the

results of the soil toxicity tests using corn, honeydew melon, alfalfa and squash are summarized in Table 4-5 through Table 4-8.

Table 4-5. Summary of Zea mays L. (corn) survival and growth endpoints for soils. Cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Total Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Tt04097	Control	92	231.1	249.4	142.4	39.4	95.6
Tt04098	Soil-157-01	96	283.1		260.7	83.9	176.8
Tt04099	Soil-295-01	Cont.	163.9		150.5	32.5	118.1
Tt04100	Soil-270-01	Ad	146.3	100.0	153.6	24.5	129.1
Tt04101	Soil-200-01	88	255.4	214.3	198.6	51.6	146.9
Tt04102	Soil-TP-01	92	224.8	100.1	151.5	25.8	125.8
Tt04103	Soil-200-02	80	242.9	244.8	164.7	31.9	132.7
Tt04104	Soil-FR-01	76	239.7		155.2	17.7	136.8
Tt04105	Soil-AS-01	84	256.4		197.0	34.7	162.3
Tt04106	Soil-295-02	96	260.5	245.5	168.3	39.6	128.7
Tt04107	Soil-AV-01	92	198.0	25.1	217.7	42.8	174.9

Table 4-6. Summary of *Cucumis melo* (melon) survival and growth endpoints for Navajo Nation soils. States cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Total Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Tt04086	Control	96	185.8	114.7	77.5	11.3	66.2
Tt04087	Soil-157-01		213.1		109.9	17.4	92.5
Tt04088	Soil-295-01	88	202.6	100.6	93.0	15.0	77.9
Tt04089	Soil-270-01		1000	64.0	104.8	17.1	125.0
Tt04090	Soil-200-01	96	197.1	135.1	102.0	15.9	86.0
Tt04091	Soil-TP-01	100	197.7	104.9	94.5	14.7	79.9
Tt04092	Soil-200-02	88	209.3	117.3	87.8	12.5	75.2
Tt04093	Soil-FR-01	6.0	214.6	94.7	104.3	14.3	90.0
Tt04094	Soil-AS-01	84	213.8	98.7	104.6	23.6	80.9
Tt04095	Soil-295-02	92	210.7	130.7	118.8	23.6	95.2
Tt04096	Soil-AV-01	1	157.3	54	159.9	20.7	139.2

Table 4-7. Summary of *Medicago sativa* (alfalfa) survival and growth endpoints for soils. State cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Total Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Tt04108	Control	64	52.4	38.6	7.3	2.6	4.7
Tt04109	Soil-157-01	60	80.1	37.7	8.5	4.1	4.4
Tt04110	Soil-295-01	52	53.3	40.2	5.5	1.3	4.2
Tt04111	Soil-270-01	40	49.2	44.0	3.5	0.9	2.5
Tt04112	Soil-200-01	64	69.7	44.1	7.3	1.8	5.5
Tt04113	Soil-TP-01	60	48.3	41.3	12.0	6.7	5.3
Tt04114	Soil-200-02	80	41.0	68.6	3.6	1.5	2.1
Tt04115	Soil-FR-01	76	72.3	41.2	9.5	3.3	6.3
Tt04116	Soil-AS-01	84	78.5	48.4	4.1	1.2	2.9
Tt04117	Soil-295-02	92	81.2	61.8	5.2	1.6	3.6
Tt04118	Soil-AV-01	64	56.9	47.2	8.4	4.2	4.2

Table 4-8. Summary of *Cucurbita pepo* (squash) survival and growth endpoints for soils. Summary of cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Total Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Tt04075	Control	60	130.1	91.4	31.6	13.2	18.4
Tt04076	Soil-157-01	68	131.2		37.1	11.4	25.6
Tt04077	Soil-295-01	12	22.4	24	23.5	8.0	15.5
Tt04078	Soil-270-01						
Tt04079	Soil-200-01	12	47.2	2.0	2.5	4.1	7.9
Tt04080	Soil-TP-01	88	150.0	69.5	37.9	9.2	28.6
Tt04081	Soil-200-02	56	104.8	54.7	26.7	5.5	21.2
Tt04082	Soil-FR-01		69.5		18.5	10.6	7.9
Tt04083	Soil-AS-01	1.6	105.6	52.2	28	9.3	18.7
Tt04084	Soil-295-02	56	129.2	81.1	35.0ª	11.9ª	30.4ª
Tt04085	Soil-AV-01	2.4	94		29.7	10.2	19.5

^a - Replicate E shoots were not dried completely upon weighing and skewed the weight measures. Replicate E shoots were removed from the analysis with respect to mean dry weight and mean shoot weight.

Sediment Toxicity

Overall, only one sediment, 10SANJUAN38, resulted in a significant difference from control with respect to *Hyalella* survival. There were no significant differences from the controls with respect to growth (28-day and 42-day); biomass (28-day and 42-day) or reproduction (42-day average young/female). The analysis of the results of the sediment toxicity tests with *Hyalella* are summarized in Table 4-9.

Soil Chemistry

Overall, the soils samples consisted of >89% solids, pH between 7.89 and 8.18, and a range of particle sizes. Soil-200-02 had the highest percentage of larger particles including medium gravel, fine gravel, and very coarse sand while Soil-295-02 had the highest percentage of clay (Table 4-10).

The analysis of total metals in the soils indicated that there were no exceedances of soil screening values for plant toxicity (Efroymson et al., 1997) for Al, Sb, As, Ba, Be, Cr, Co, Cu, Hg, Ni, silver (Ag), and thallium (Tl) (Table 4-11). All soils had concentrations of V higher than the screening value. Soil-200-01 had the most metals with concentrations in exceedance of screening values including Cd, Mo, Se, V, and Zn. The measured concentrations of Cd, Mo, Se, and V in Soil-200-01 were also the highest measured in all sampled soils (Table 4-11). The results of chemical analysis of the soils are summarized in Table 4-10 and Table 4-11.

Sediment Chemistry

Overall, the sediment samples consisted of 54.6-75.5% solids, acid volatile sulfides (AVS) concentrations between non-detect (0.007 µmole/g) to 0.9 µmole/g, and total organic carbon (TOC) percentage between 0.2 to 1.25%. Sediment 10SANJUANR38 had the highest concentration of AVS and TOC (Table 4-12).

The analysis of total metals in the sediments indicated that there were no exceedances of sediment screening values for toxicity (Buchman, 2008) for all sediment samples except Mn in sediment 10SANJUANR38 (Table 4-12). The results of chemical analysis of the sediments are summarized in Table 4-12.

Summary

Soils

Soil-270-01 resulted in significant effects in 3 out of 4 plant species tested but did not have the highest concentration of any metal. Soil-200-01 resulted in no significant effects for 3 out of 4 plant species tested but had the highest metal concentration for 8 metals with five of those exceeding screening values. This suggests that observed effects on plants in the laboratory tests were not linked to measured soil metal concentrations. This will be further explored in the final report.

Sediments

Only one sediment sample resulted in significant effects with respect to the sediment toxicity, 10SANJUANR38. This sediment also had the only metal, Mn, with a measured concentration more than the published sediment screening value. Therefore, the *Hyalella* survival effects noted could have been due to the concentration of Mn in the sample.

Table 4-9. Summary of *Hyalella azteca* survival, growth and reproduction endpoints for Anacostia River sediments. \bullet cells are significantly less than controls (p < 0.05).

Test ID	Location	28 Day Mean % Survival (N = 12)	28 Day Mean % Survival (N = 8)	35 Day Mean % Survival (N = 8)	42 Day Mean % Survival (N = 8)	28 Day Mean Weight of Survivors (mg)	28 Day Mean Individual Weight based on 10 Organisms per Chamber (mg)	42 Day Mean Weight of Survivors (mg)	42 Day Mean Individual Weight based on 10 Organisms per Chamber (mg)	42 Day Average Young/Female
Tt04050	Controls	84.2	87.5	82.5	81.3	0.30	0.24	0.49	0.40	2.8
Tt04040	02SANJUANR07	90	90	90	88.8	0.70	0.63	0.74	0.66	6.6
Tt04041	02SANJUANR06	86.7	86.3	83.8	82.5	0.55	0.49	0.58	0.48	2.0
Tt04042	10SANJUANR38					0.33	0.23	0.71	0.32	5.9
Tt04043	10HOGBACKC43	93.3	88.8	87.5	87.5	0.29	0.30	0.58	0.51	4.1
Tt04044	10SANJUANR26	96.7	98.8	91.3	91.3	0.62	0.57	0.70	0.64	8.6
Tt04045	06CHACORIV04	82.5	96.3	96.3	96.3	0.84	0.46	0.50	0.48	2.3
Tt04046	10HOGBACKC44	89.2	87.5	87.5	90	0.44	0.41	0.67	0.61	4.7
Tt04047	07MANCOSRI01	76.7	73.8	73.8	73.8	0.33	0.27	0.52	0.39	1.7
Tt04048	10FRUCANAL45	89.2	86.3	83.8	83.8	0.83	0.79	0.71	0.60	4.4
Tt04049	10FRUCANAL40	88.3	95.0	90	90	0.65	0.49	0.63	0.57	3.4

Table 4-10. Summary of results of general chemistry on Navajo Nation soils.

	Surface Soils											
Parameter	Units	Soil-295-01	Soil-200-02	Soil-200-01	Soil-TP-01	Soil-FR-01	Soil-AS-01	Soil-295-02	Soil-AV-01	Sail-270-01	Soil-157-01	
Total Solids	%	94.2	91.3	94	94.2	96.4	93.1	89.6	96.4	95.3	95	
pH	Su	8.13	8.05	7.93	8.04	7.98	7.93	8.13	7.89	8.18	8.11	
Gravel, Medium	%	0	0.39	0	0	0	0	0	0	0	0	
Gravel, Fine	%	0.02	4.62	1.98	0.13	0.19	0.32	1.07	0.02	0.21	0.16	
Sand, Very Coarse	%	0.33	6.32	3.29	3.37	0.7	1.51	1.48	0.18	0.81	0.43	
Sand, Coarse	%	6.1	6.39	3.68	6.26	6.12	3.26	6.17	1.13	11.73	1.99	
Sand, Medium	%	12.06	5.58	3.93	6.84	13.15	5.39	11.78	3.45	22.17	3.93	
Sand, Fine	%	23.76	9.37	11.38	23.79	31.55	26.84	21.21	14.33	28.75	12.17	
Sand, Very Fine	%	11.35	5.77	7.21	12.64	10.41	15.29	9.15	10.04	6.36	8.35	
Silt	%	42.58	54.7	64.74	44.29	34.75	41.38	37.41	66.6	25.07	64.06	
Clay	%	4.59	6.94	2.31	2.3	2.99	6.64	11.72	5.55	5	4.95	

Table 4-11. Summary of metals analysis on Navajo Nation soils. Bolded values indicate the maximum measured value across all soils. Cells indicate measured value above the Soil Screening Level for plants (Efroymson et al., 1997).

							Surface So	ills				
Parameter	Units	Soil Screening Level	Soil-295-01	Sail-200-02	Soil-200-01	Soil-TP-01	Soil-FR-01	Soil-AS-01	Soil-295-02	Soil-AV-01	Soil-270-01	Soil-157-01
Aluminum	mg/Kg	50	6910	7570	5140	5900	5620	8230	6010	6860	4550	6380
Antimony	mg/Kg	5	0.084	0.101	0.24	0.087	0.072	0.121	0.099	0.095	0.103	0.074
Arsenic	mg/Kg	18	4.52	4.54	9.14	3.94	3.16	4.58	3.9	4.14	3.56	4
Barium	mg/Kg	500	251	143	68.5	231	141	213	328	248	89.7	120
Beryllium	mg/Kg	10	0.491	0.621	0.46	0.603	0.445	0.697	0.432	0.579	0.35	0.505
Cadmium	mg/Kg	0.5	0.193	0.457	1.54	0.276	0.236	0.273	0.216	0.384	0.491	0.355
Chromium	mg/Kg	10	5.62	8.95	8.8	6.53	5	7.19	5.47	7.78	5.84	8.27
Cobalt	mg/Kg	13	4.6	4.74	4.74	5.95	4.2	6	4.22	4.53	3.29	3.93
Copper	mg/Kg	70	10.9	16.3	16	17.5	11.8	16.7	9.69	12.4	8.45	10.9
Iron	mg/Kg		11400	12500	13500	9340	8810	13700	11700	10300	8560	11000
Lead	mg/Kg	50	11.4	23.6	11.3	21.5	17.1	32.9	9.86	19.3	8.45	11
Manganese	mg/Kg	220	259	300	162		187	392	174	342	200	197
Mercury	mg/Kg	0.3	0.013 J	0.017 J	0.019 J	0.012 J	0.011 J	0.018 J	0.015 J	0.011 J	0.006 J	0.013 J
Molybdenum	mg/Kg	2	0.517	0.863	7.77	0.47	0.333	0.479	0.531	0.464	1.34	1.15
Nickel	mg/Kg	30	7.61	10.5	25.6	7.68	6.09	8.82	7.01	7.27	8.6	11.5
Selenium	mg/Kg	0.52	0.3 J		3.62	0.3 J	0.23 J	0.35 J	0.3 J	0.28 J	100	0.60
Silver	mg/Kg	2	0.067	0.155	0.117	0.113	0.091	0.17	1.29	0.082	0.055	0.073
Thallium	mg/Kg	1	0.11	0.144	0.47	0.153	0.09	0.141	0.103	0.132	0.164	0.171
Vanadium	mg/Kg	2	21.1	18.8	41.4			20.6	13.7		10.0	10.0
Zinc	mg/Kg	50	36.6			70.0		78.4	34.4		41.9	

Table 4-12. Summary of general chemistry and metals analysis on Navajo Nation sediments. Bolded values indicate the maximum measured value across all sediments. Shaded cells indicate measured value above the Sediment Screening Level (Buchman, 2008). Cells indicate the maximum measured value across all sediments.

measured value above the Soil Screening Level of plants (Efoymson et al., 1997)

illeasureu value	above the	above the Soil Screening Level of plants (Efoymson et al., 1997) Sediments										
Parameter	Units	Sediment Screening Level	02SANJUANR07	02SANUANR06	10SAN/UANR38	10HOGBACKC43	10SANJUANR26	06CHACORIV04	10HOGBACKC44	07MANCOSRI01	10FRUCANAL45	10FRUCANAL40
Total Solids	%	NA	68.1	70.2	57.2	75.5	56.8	54.6	69.8	59.1	63	71.5
Acid Volatile Sulfide (AVS)	μmole/g	NA	0.308	0.37	0.9	0.007 U	0.57	0.007 U	0.57	0.037	0.39	0.26
Total Organic Carbon (TOC)	%	NA	0.82	0.73	1.25	0.25	0.85	0.62	0.2	0.97	0.63	0.41
Aluminum	mg/Kg	NA	11300	9140	12000	6050	13300	15700	5930	11300	9690	7320
Antimony	mg/Kg	3	0.109	0.092	0.085	0.067	0.097	0.08 J	0.052	0.07 J	0.076	0.07
Arsenic	mg/Kg	5.9	5.88	4.32	4.87	2.4	5.56	6.26	2.38	4.5	4.08	2.77
Barium	mg/Kg	NA	220	208	294	240	242	224	209	134	257	358
Beryllium	mg/Kg	NA	0.9	0.668	1.08	0.484	1.04	1.17	0.472	1.47	0.831	0.601
Cadmium	mg/Kg	0.583	0.316	0.192	0.191	0.079	0.239	0.235	0.082	0.34	0.172	0.12
Chromium	mg/Kg	26	12.7	9.56	10.2	6.87	11.1	13.5	5.31	6.13	8.03	6.29
Cobalt	mg/Kg	50	7.49	5.9	8.18	4.39	7.82	7.94	3.77	6.46	6.7	4.92
Copper	mg/Kg	28	17.9	13.1	18.1	7.88	18.1	19	7.73	13.9	15.8	10.3
Iron	mg/Kg	NA	16300	12700	15500	8890	16200	17900	8640	13100	13700	10300
Lead	mg/Kg	31	12.9	9.68	13.8	6.52	13.5	14.7	7.04	16	13.4	9.59
Manganese	mg/Kg	460	394	354		222	450	330	219	199	385	241
Mercury	mg/Kg	0.174	0.026 J	0.016 J	0.023 J	0.007 J	0.026 J	0.03 J	0.005 J	0.045 J	0.019 J	0.01 J
Molybdenum	mg/Kg	NA	1.41	0.864	0.482	0.309	0.885	0.719	0.293	0.688	0.478	0.272
Nickel	mg/Kg	16	15.4	11.4	10.6	5.91	12.3	13.6	5.42	10	8.73	6.4
Selenium	mg/Kg	NA	0.62 J	0.36 J	0.29 J	0.14 J	0.5 J	0.47 J	0.14 J	0.67 J	0.24 J	0.18 J
Silver	mg/Kg	0.5	0.082	0.054	0.08	0.024	0.081	0.09	0.024	0.087	0.07	0.047
Thallium	mg/Kg	NA	0.285	0.195	0.212	0.108	0.258	0.27	0.097	0.268	0.173	0.126
Vanadium	mg/Kg	NA	26.4	20.7	23.2	13.9	25.7	28.8	12.8	14	19.4	14.8
Zinc	mg/Kg	98	54.9	42.3	59.3	29.2	58	58.7	31.7	48.1	62.5	43.4

4.2.4. Other Studies

Utah DEQ San Juan River Screening Risk Assessment

On behalf of Utah Department of Environmental Quality (DEQ), Tetra Tech conducted a screening level human health, ecological, and agricultural risk assessment (SLRA) for San Juan River and Lake Powell with respect to potential impacts from the Gold King Mine (GKM) release in August 2015. Approximately three million gallons of acid mine water containing mine waste sediments and heavy metals was released into Cement Creek, a tributary of the Animas River. The release flowed downstream as an orange-colored plume that became diluted as the Animas River joined the San Juan River by water releases from the Navajo Lake Dam.

The SLRA serves as a screening, which is designed to conservatively estimate the potential risks associated with exposure to water and sediment of the San Juan River due to the release of contaminants from the GKM incident. The SLRA was completed in accordance with the U.S. EPA guidance for human health and ecological risk assessment under the Comprehensive Environmental Response, Compensation and Liability Act (specifically, the U.S. EPA's Risk Assessment Guidance for Superfund 1989).

The SLRA applied conservative assumptions to evaluate the potential risks to wildlife, humans, and crops under a range of relevant scenarios. Given the conservative assumptions used in the SLRA a finding of little or no potential for risk would provide assurance that wildlife, human health, and crops are unlikely to be adversely affected by constituents present in the sediments, surface water, or as accumulated in soil.

Human Health Risk Assessment

The evaluation of total metal concentration in surface water showed that eight metals are potential hazards when compared to U.S. EPA Regional Screening Levels (As, Ba, Be, Cd Co, Pb, Tl, and V), six exceeded chronic Environmental Media Evaluation Guidelines (EMEGs) for children (Sb, As, Ba, Be, Cd, and Ni) with four also exceeding chronic adult EMEGs (As, Ba, Be, and Cd), one exceeded acute EMEGs for children (Cu), and eight exceeded Utah's drinking water maximum contaminant levels or action levels (Sb, As, Ba, Be, Cd, Cr, Pb, and Tl). These exceedances were based on total metal concentrations in surface water and therefore may not be representative of at-the tap measurements from filtered or treated water. In addition, it is possible, if not likely, that domestic water supplies are from groundwater rather than directly from the river. Nonetheless, these exceedances indicate that domestic use of SJR water could result in adverse health effects to children and adults.

Dissolved concentrations of Fe and Mn in water were found to be above Utah Department of Environmental Quality agricultural screening levels, indicating that use of SJR water for irrigation has the potential to decrease the health or yield of some types of crops. In addition, the dissolved concentration of Pb measured in the SJR slightly exceeded Utah's domestic water quality standard which could result in adverse human health impacts such as elevated blood Pb levels in children. However, this exceedance was found to be in only one sample and may not be indicative of long-term exposure concentrations.

Agricultural Risk Assessment

Al that may accumulate in irrigated soil was estimated to exceed benchmark levels for plant health, although U.S. EPA Ecological Soil Screening Levels note that toxicity from Al is possible only if soil pH is less than 5.5. This evaluation was based on assumed water usage, a moderate depth of tillage, and the assumption that all metals were retained in the soil. This did not account for background concentrations,

and therefore could be an underestimate of potential risk, but the intent of the screening-level risk assessment was to focus on incremental risks.

TI in beef was associated with a hazard quotient above 1.0. This hazard applies to human ingestion of beef, rather than effects to cattle. This estimate is based on (1) direct ingestion of SJR water by cattle; (2) incidental ingestion by cattle of soil irrigated with SJR water; and (3) ingestion of plants and pasture grass irrigated by SJR water, using the total metal concentrations measured in water. This may result in an overestimate of tissue concentration, as the inputs may overestimate exposure of cattle due both to concentration and bioaccumulation potential. However, the estimates do not include the contribution of background concentrations.

Ecological Risk Assessment

A screening level ecological risk assessment (SLERA) was performed for constituents of potential concern (COPCs) in sediment and surface water in the San Juan River before and after the Gold King Mine (GKM) spill. The results of the screening Step 1 analysis identified multiple inorganic constituents as COPCs in both sediment and surface water and the conservative Step 2 food-chain modeling indicated a potential for risk to certain types of receptors that are likely present in the study area. The identification of inorganics as COPCs and the identification of receptors of concern potentially at risk supports the recommendation to conduct additional steps of the ecological risk assessment (ERA) process to provide more realistic estimates of exposure and risk, consistent with U.S. EPA guidance.

Pre-GKM Spill

Based on the sediment and surface water maximum concentrations available for the SJR before the GKM spill entered Utah, sediment concentrations of Ba and surface water concentrations of Fe and Mn were greater than the ESVs. Certain inorganics including sediment concentrations of strontium (Sr) and surface water concentrations of Sb, Be, Cd, calcium, chloride, Co, Mo, nitrate, nitrite, Na, Sr, Tl and V were not measured in the SJR prior to the spill, thus pre-spill risks due to these COPCs could not be quantified. Using the full list of COPCs identified in the post-spill GKM, pre-spill concentrations of these COPCs were evaluated in Step 2. The Step 2 upper trophic level risk assessment indicated that all COPCs, except Ag, are recommended for further evaluation.

GKM Spill

Post GKM spill analysis of maximum measured surface water and sediment concentrations in the entire Utah portion of the SJR and Lake Powell, resulted in fourteen constituents identified as posing potential risk and needing further evaluation. In sediment, Ba and Sr, were the only two COPCs with detected maximum concentration greater than ESVs; while in surface water, fourteen COPCs (AI, Ba, Be, Co, Cu, Fe, Pb, Mn, Hg, nitrate-nitrite, Ag, Sr, V, and Zn) were identified as having maximum detected concentration greater than ESVs. All COPCs identified in Step 1 were retained in Step 2 due to at least one receptor (lower or upper trophic level) indicating potential risk. Therefore, all fourteen COPCs evaluated in Step 2 indicate risk and should be further evaluated.

Risk Summary

Based on the evaluation of risks associated with direct human and wildlife exposure to San Juan River (SJR) water and sediment, agricultural exposure pathways, and potential accumulation of metals in soil, there are no immediate risks to human health, wildlife, or agricultural receptors. However, there were some exceedances of risk- based screening levels as discussed above.

5. Exposure to Metals from Crops, Livestock, and Water

Human health risk assessment is the scientific process of evaluating the toxic properties of compounds and the conditions of human exposure to determine the likelihood that an exposed population will be adversely affected. The same process can be used to calculate risk-based water quality parameters and it can be adapted to other receptors (such as plants and livestock). Further, it is consistent with the process used to set AWQC for humans (U.S. EPA 2000). Following the risk assessment model presented by U.S. EPA (1989), the approach to establishing human health risk-based water quality parameters includes an exposure assessment, a toxicity assessment, and calculating risk-based values that include the exposures, toxicities and acceptable risks or hazard levels for all receptors. This assessment is meant to capture a range of exposures for the Navajo Nation, and includes documentation of all exposure assumptions and equations, toxicity values, exposure data, sources of uncertainty and data gaps, conclusions and recommendations. Using the established methodologies, exposure information, and potential toxicity of metals, the AWQCs are intended to protect human health.

5.1. Exposure Evaluation: Potential Exposure Pathways and Conceptual Site Model Exposure to constituents can only occur if there is a complete pathway by which humans can be exposed to the affected food, soil, or water. Risk-based water quality standards include all potentially complete exposure pathways. A fundamental principle in risk-based evaluations is that a risk can only occur if there are links between sources of chemicals and human or, as in this case, agricultural receptors (e.g., plants and animals). Therefore, determination of complete exposure pathways and development of the Conceptual Site Model (CSM) form the basis of the exposure assessment upon which AWQC calculations are based (Figure 5-1). The CSM for the risk-based standards includes sources, transport mechanisms, points of exposure, exposure pathways, and receptors. Water can be used for domestic purposes, and exposure routes to humans can also occur through ingestion of plants and animals that utilize the same water source. Agriculture exposure pathways include livestock and plants, both as receptors and as an additional exposure pathway to humans who ingest homegrown products. In rural areas, all of these pathways can be complete to the same individual.

Dietary exposure pathways can represent a major exposure route to metals (U.S. EPA 2007); these are assessed as part of the agricultural risk-based assessment. In the agricultural risk-based assessment, it is assumed that surface water will be used to irrigate crops and pasture lands as well as to water livestock. Further, the crops are assumed to be food for livestock. Homegrown produce is assessed as well, in a manner separate from pasture and agricultural crop irrigation to more accurately assess the potential exposure route of consumption of homegrown produce. The agricultural risk assessment therefore includes livestock that have been fed crops grown on irrigated lands, and direct exposure to water and soils irrigated with surface water for livestock. Estimated tissue concentrations from livestock are calculated in this evaluation and used to refine the human water quality standards by estimated contribution of consumption of homegrown meat products to total human exposure. The calculated results are based on total metal content of water (not just dissolved concentrations). While water quality standards are often based on dissolved concentrations of metals, total metal content represents a more likely exposure through agricultural use of water as well as direct exposure to surface water. It is possible that irrigation may occur with water that contains particulates and livestock may have direct access to unfiltered water. Table 5-1 presents the exposure pathways included in the AWQC development.

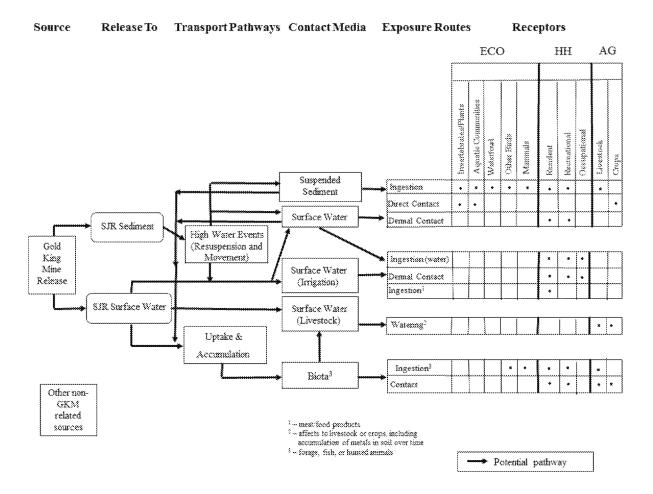


Figure 5-1. Conceptual site model (CSM) displaying complete pathways of metal exposure to Navajo people and potential effects of crops, livestock, ad human health.

Table 5-1. Exposure pathways evaluated.

Receptor	Pathway Evaluated
Plants	Crops irrigated with water – direct toxicity to plant
Livestock	Ingestion of Water (direct exposure of livestock) Ingestion of Soil/Pasture/Crops Irrigated with Water (indirect exposure of livestock)
Humans	Ingestion of Water (direct exposure of humans to water) Consumption of Homegrown Produce (indirect exposure to metals from surface water) Consumption of Homegrown Meat (indirect exposure to metals from surface water)

5.2. Exposure parameters and chemical-specific inputs

The estimation of uptake and exposure requires several different equations and input parameters. Table 5-2 presents all parameters used in the equations to calculate exposures and AWQC. Exposure parameters for humans for all pathways are based on the child receptor. The child receptor has a lower body weight and higher intake rate relative to adults, and therefore the AWQC and calculated exposures are more conservative. The As evaluation is based on both carcinogenic and noncarcinogenic endpoints, consistent with its classification by U.S. EPA as causing both a carcinogen and noncarcinogen. The assessment of carcinogenic endpoints for the food ingestion pathways includes both children and adult receptors, consistent with U.S. EPA recommended methods.

Chemical-specific bioaccumulation values are presented in Table 5-3. These parameters are bioaccumulation factors for metals from soil to vegetative parts of plants as well as to reproductive (fruit and vegetable) parts of plants. Uptake factors that estimate the accumulation of metals in animal tissue are also provided. Section 3 provides a more extensive summary of literature research results on this topic.

Table 5-2. Exposure Equations and Parameters used in Water Quality Standards Assessment

Receptor	Pathway	Equation	Parameters
Human	Ingestion of Water	AWQC = Toxicity Value x BWc	AWQC = Ambient Water Quality Criteria Toxicity value (mg/kg-day or $1/mg/kg$ -day, chemical specific) BW _c = Body weight, child (15 kg) IR _w = Ingestion Rate water (1 L/day)
	Consumption of Homegrown Produce	Soil concentration = AWQC x L used / (Acreage x Tillage Depth x Soil density) Then: Intake = Soil concentration x BAF _r x IR _{pc} x EF x ED x 1000 mg/g x 1E-6 kg/mg / AT x BW _c	AWQC = proposed value BAF _r = Bioaccumulation in plant reproductive parts IR _{pc} = Ingestion rate of child for fruits (68.1 g/day) and vegetables (41.7 g/day), 109.8 g/day EF = Exposure Frequency, 350 days/year ED = Exposure Duration, 6 years AT = 2190 days (365 days/year for 6 years) BW _c = Body Weight, child 15 kg

Table 5-2 (continued).

Receptor	Pathway	Equation	Parameters
	Consumption of Homegrown Meat	Tissue metal concentration = Sum of tissue metal concentration from water ingestion and food ingestion Intake (mg/kg-day) = Tissue concentration x IR _{mc} x EF x ED x 1000 mg/g x 1E-6 kg/mg / AT x BWc	Tissue Concentration = mg/kg (calculated) IR _{mc} = Ingestion rate of child for homegrown meat products, 54 g/day EF = Exposure Frequency, 350 days/year ED = Exposure Duration, 6 years AT = 2190 days (365 days/year for 6 years) BW _c = Body Weight, child 15 kg Adjusted intake for carcinogenic effects: IR = 32091500 mg-yr/kg-day based on child and adult exposures for a total of 40 years; AT = 25550 days (70 year lifespan). Body weight is excluded from equation.
Plants	Crops Irrigated with Water	Soil concentration estimate x BAF _{veg} Where soil concentration estimated as: AWQC x Water use (L/m²) / soil bulk density g/m³	BAF _{veg} = chemical specific Soil bulk density = 1.6 g/ cm ³ Water use = 0.00013 L/cm ² Tillage depth = 15 cm
Livestock	Ingestion of water	Toxicity Value x BW _L / IR _w	Toxicity value = chemical specific BWL = Body weight of livestock: cattle (272 kg); Sheep (68 kg) IRw = Ingestion rate water, cattle (54.4 L/day); sheep (4 L/day)
	Ingestion of soil/crops/pasture	Soil concentration estimate x BAF Where soil concentration estimated as: AWQC x Water use (L/m²) x tillage depth (cm) x 1/ soil bulk density g/m³ And intake from crops/pasture/soil is estimated as: Soil concentration estimate x BAF _{veg} x [IR _{feed} +IR _{soil}] / BWL	BW _L = Body weight of livestock: cattle (272 kg); Sheep (68 kg) IR _{feed} = Ingestion rate feed, cattle (12.84 kg/day); sheep (3.78 kg/day) IR _{soil} = Ingestion rate of soil (approximately 10% of feed) BAF _{veg} – chemical specific

Table 5-3. Bioaccumulation values

Metal	Vegetative Plant (BAF _{veg})	Fruit/Vegetable Plant (BAF _r)	Beef (sheep) transfer coefficient
Aluminum	0.001	0.00065	0.0015
Antimony	0.05	0.03	0.001
Arsenic	0.01	0.006	0.002
Barium	0.0375	0.015	0.00015
Beryllium	0.0025	0.0015	0.001
Cadmium	0.1375	0.15	0.00055
Chromium	0.001875	0.0045	0.0055
Cobalt	0.005	0.007	0.02
Copper	0.1	0.25	0.01
Iron	0.001	0.001	0.02
Lead	0.01125	0.009	0.0004
Manganese	0.0625	0.05	0.0004
Mercury	0.225	0.2	0.25
Molybdenum	0.0625	0.06	0.006
Nickel	0.015	0.06	0.006
Selenium	0.00625	0.025	0.015
Silver	0.1	0.1	0.003
Thallium	0.001	0.0004	0.04
Vanadium	0.001375	0.003	0.0025
Zinc	0.264	0.9	0.1

Bioaccumulation factors from Baes et al., 1984

Assumptions: Beef transfer coefficient used for sheep.

5.3. Toxicity Assessment

Table 5-4 presents the human toxicity values that were used for each evaluated metal in developing water quality standards. Table 5-4 presents the human toxicity values from U.S. EPA as well as information regarding target organ, sensitive life stages, and health effect or outcome. Most values can be found in U.S. EPA's Integrated Risk Information System (IRIS), although some values are provisional.

Toxicity reference values and screening levels for agricultural receptors are presented in Table 5-5. Several sources including those discussed in section 3 were used to identify toxicity-based screening values for plants. Toxicity reference values for livestock were calculated from maximum tolerable levels in feed (NRC 2005). If a value was not available from NRC 2005, additional sources of toxicity information were used as noted in Table 5-5. All screening values and toxicity reference values are based on total metals concentrations in water or soil. This is consistent with the agricultural pathways

identified, which are best assessed using total metals concentrations as exposure to surface water is likely to occur without filtration or other treatment.

Water concentrations that correspond to an acceptable hazard level for human ingestion of homegrown plants and meat were based on the toxicity values in Table 5-4; bioaccumulation factors for plants, cattle, and sheep were obtained from ORNL 2018 and Baes et al. 1984 and are presented in Table 5-3.

Table 5-4. Toxicity values for the human health risk-based AWQC

		Noncand	cer Chronic Toxicity Values	Toxicity Basis					
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome			
Aluminum	7429-90-5	1.00E+00	Provisional value; based on minimal neurotoxicity in the offspring of mice. Uncertainty factor = 100	Nervous System. Studies in animals have shown that the nervous system is a sensitive target of aluminum toxicity. https://www.atsdr.cdc.gov/phs/phs.asp?id=1076&tid=34	Children. Children with kidney problems who were given aluminum in their medical treatments developed bone diseases. It does not appear that children are more sensitive to aluminum than adults. Additionally, it is not known if aluminum can cause birth defects in people. Birth defects have not been seen in animals; however, aluminum in large amounts has been shown to be harmful to unborn and developing animals because it can cause delays in skeletal and neurological development. https://www.atsdr.cdc.gov/toxfaq s/TF.asp?id=190&tid=34	Nervous System Effects. Oral exposure to aluminum is usually not harmful. Some studies have shown that people exposed to high levels of aluminum may develop Alzheimer's disease, but other studies have not found this to be true. https://www.atsdr.cdc.gov/phs/ph s.asp?id=1076&tid=34			
Antimony	7440-36-0	4.00E-04	IRIS 2018. Animal Study, Target organ - longevity, blood glucose, cholesterol. Schroeder et al., 1970. Uncertainty factor = 1000	Hematological - Limited information suggests that antimony can damage the developing cardiovascular system in rats.	Lack of sufficient information to know if children are more susceptible to antimony toxicity than adults ; however, studies in workers and in rats have shown that antimony can decrease infant growth.	Hematological/Developmental. A high rate of premature deliveries among women workers in antimony smelting and processing was also observed. Aiello, G. (1955). Pathology of antimony. Folia Med. (Naples). 38: 100. (Ital.) One study indicated that women workers exposed in an antimony plant experienced a greater incidence of spontaneous abortions than did a control group of nonexposed working women. Belyaeva, AP. (1967). The effect of antimony on reproduction. Gig. Truda Prof. Zabol. 11: 32.			

Table 5-4 (continued).

		Noncand	er Chronic Toxicity Values		Toxicity Basis	
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome
Arsenic (1)	7440-38-2	RfD = 3.00E-04	RfD: IRIS 1991. Animal study - hyperpigmentation, keratosis and possible vascular complications. Uncertainty factor – 3 CSF: IRIS 1995. Increased mortality from multiple internal organ cancers (liver, kidney, lung, and bladder) and an increased incidence of skin cancer were observed in populations consuming drinking water high in inorganic arsenic.	RfD: Cardiovascular, dermal - Hyperpigmentation, keratosis and possible vascular complications CSF: Classified as a class A carcinogen (known human carcinogen)	Infants and children following prenatal and early life exposure to arsenic in drinking water. https://www.atsdr.cdc.gov/toxpr ofiles/Arsenic_addendum.pdf Increase in skin lesions in individuals greater than 20 years. Blackfoot disease increases sharply in individuals greater than 40 years.	Dermal Effects. The data reported show an increased incidence of blackfoot disease that increases with age and dose. Blackfoot disease is a significant adverse effect. Developmental and neurodevelopmental effects. https://www.atsdr.cdc.gov/toxprofiles/Arsenic_addendum.pdf
Barium	7440-39-3	2.00E-01	IRIS 2005. Animal Study - Nephropathy, 2-year drinking water study in mice. NTP, 1994. Uncertainty factor - 300	Kidney - appears to be most sensitive target of toxicity resulting from repeated ingestion of soluble barium salts	There are no human data examining age-related differences in susceptibility to barium toxicity. Source: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0010tr.pdf 1.50E+04	Urinary System Effects - Nephropathy Data on the reproductive and developmental toxicity of barium compounds are limited. The data base consists of single-generation reproductive toxicity studies in rats and mice (Dietz et al., 1992) and a developmental toxicity study conducted by Tarasenko et al. (1977). Dietz, DD; Elwell, MR; Davis, WE, Jr.; et al. (1992) Subchronic toxicity of barium chloride dihydrate administered to rats and mice in the drinking water. Fund Appl Toxicol 19:527-537. Tarasenko, NY; Pronin, OA; Silyev, AA. (1977) Barium compounds as industrial poisons (an experimental study). J Hyg Epidemiol Microbiol Immunol 21:361-373.

Table 5-4 (continued).

		Noncand	er Chronic Toxicity Values		Toxicity Basis	
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome
Beryllium	7440-41-7	2.00E-03	IRIS 1998. Animal study - Small intestinal lesions, dog dietary study. Morgareidge et al., 1976. Uncertainty factor - 300	Small intestine - target organ found in dogs	Children would be expected to have a greater gastrointestinal absorption rate and be more susceptible to the effects than adults.	Gastrointestinal Effects - lesions of the small intestine found in dogs.
Cadmium	7440-43-9	5.00E-04 (water) 1.00E-3 (food)	IRIS 1989. Human study - Significant proteinuria, human studies involving chronic exposures. U.S. EPA, 1989. Uncertainty factor - 10	Regardless of the exposure route, cadmium is widely distributed in the body with the highest levels found in the liver and kidneys	It is likely that effects observed in adults exposed to cadmium will also be seen in children. Because cadmium is a cumulative toxin and has a very long half time in the body, exposure to children in even low amounts may have long-term consequences. Studies in animals suggest that children may be more susceptible than adults on cadmium-induced bone damage. https://www.atsdr.cdc.gov/toxguides/toxguide-5.pdf	Urinary System and Musculoskeletal Effects. The effects observed in humans include renal tubular damage, glomerular damage, decreases in bone mineralization increased risk of bone fractures. These effects typically occur after long term exposure to cadmium. https://www.atsdr.cdc.gov/toxguide_s/toxguide-5.pdf
Chromium	7440-47-3	1.50E+00	*Chromium assumed to be trivalent chromium; RfD is based on the no observed effects level, Uncertainty factor = 100	Absorbed chromium is distributed to nearly all tissues, with the highest concentrations found in kidneys and liver. Bone is also a major depot and may contribute to long-term retention. https://www.atsdr.cdc.gov/toxguides/toxguide-7.pdf	It is likely that effects observed in adults exposed to Cr (III) will also be seen in children .	Metabolic Effects. Trivalent chromium is an essential element. Deficiency causes adverse changes in the metabolism.

Table 5-4 (continued).

		Noncan	cer Chronic Toxicity Values	Toxicity Basis				
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome		
Cobalt	7440-48-4	3.00E-04	Provisional value; based on decreased uptake of iodine to thyroid in humans. Uncertainty factor = 3000	Can be found in most body tissues following oral exposure. Highest concentration found in the liver.	It is likely that effects observed in adults exposed to high levels of cobalt will also be seen in children. Studies in animals have suggested that children may absorb more cobalt from foods and liquids containing cobalt than adults. https://www.atsdr.cdc.gov/toxpr ofiles/tp33.pdf	Sensitive end points are Hematological effects (polycythemia) - increase levels of erythrocytes and hemoglobin in both humans and animals; and cardiovascular effects - cardiomyopathy Other effects involving the hepatobiliary and urinary systems have been noted in rats. https://www.atsdr.cdc.gov/toxprof iles/tp33.pdf		
Copper	7440-50-8	NA	NA	Copper rapidly enters the bloodstream and is distributed throughout the body after ingesting either by food or drink. https://www.atsdr.cdc.gov/PHS/PHS.asp?id=204&tid=37	Exposure to high levels of copper will result in the same type of effects in children and adults . It is also not known if copper can cause birth defects or other developmental effects in humans. https://www.atsdr.cdc.gov/toxfaq s/tf.asp?id=205&tid=37	Gastrointestinal Effects. Ingesting high levels of copper can cause nausea, vomiting, and diarrhea. Hepatobiliary and urinary systems Very-high doses of copper can cause damage to the liver and kidneys, and can even cause death. https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=205&tid=37		
Iron	7439-89-6	7.00E-01	PPTRV value; U.S. EPA 2018. Based on LOAEL for adverse GI effects. Uncertainty Factor = 1.5.					
Lead	7439-92-1	NA	NA	Lead bioaccumulates in the body, primarily in the skeleton (bone).	Lead has particularly significant effects in children, Children under 6 years ol d have a high risk of exposure because of their more frequent hand-to-mouth behavior (Centers for Disease Control and Prevention (CDC), 1991 http://www.cdc.gov/nceh/lead/publications/books/plpyc/contents. htm)	Neurological (Nervous System), Renal (Urinary System or Kidneys) Lead body burdens vary significantly with age, health status, nutritional state, maternal body burden during gestation and lactation, etc https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=22		

Table 5-4 (continued).

		Noncan	cer Chronic Toxicity Values		Toxicity Basis	
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome
Manganese	7439-96-5	1.40E-01	IRIS 1995. Human studies - CNS effects, human chronic ingestion data. NRC, 1989; Freeland-Graves et al., 1987; WHO, 1973. Uncertainty factor - 1	Brain. Principal toxicity target of manganese https://www.atsdr.cdc.gov/toxprofile s/tp151.pdf	Children are potentially more sensitive to manganese toxicity than adults https://www.atsdr.cdc.gov/toxpr ofiles/tp151.pdf	Neurological Effects. Studies in children have suggested that extremely high levels of manganese exposure may produce undesirable effects on brain development, including changes in behavior and decreases in the ability to learn and remember. NOTE: A number of reports indicate that oral exposure to manganese, especially from contaminated water sources, can produce significant health effects. These effects have been most prominently observed in children. https://www.atsdr.cdc.gov/toxprofil es/tp151.pdf
Mercury	7439-97-6	NA	NA	Kidneys. Accumulates in the kidneys.	Children are particularly sensitive to exposures during the period from conception to maturity at 18 years of age in humans.	Urinary; Gastrointestinal; Cardiovascular effects. In addition to effects on the kidneys, inorganic mercury can damage the stomach and intestines, producing symptoms of nausea, diarrhea, or severe ulcers if swallowed in large amounts. Effects on the heart have also been observed in children after they accidentally swallowed mercuric chloride. Symptoms included rapid heart rate and increased blood pressure. There is little information on the effects in humans from long-term, low-level exposure to inorganic mercury. https://www.atsdr.cdc.gov/PHS/PHS .asp?id=112&tid=24

Table 5-4 (continued).

		Noncan	cer Chronic Toxicity Values	Toxicity Basis				
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome		
Molybdenum	7439-98-7	5.00E-03	IRIS 1992. Human study - Increased uric acid levels. Human 6-year to lifetime dietary exposure study. Koval'skiy et al., 1961. Uncertainty factor - 30	Kidneys. Available data from laboratory animal studies suggest that the kidney may be a target of molybdenum toxicity NOTE: Absorbed molybdenum distributes to various tissues. Human autopsy studies have found that the kidney and liver have the highest amounts of molybdenum https://www.atsdr.cdc.gov/toxprofile s/tp212-c3.pdf	Children need small amounts of molybdenum to maintain good health. It is likely that the adverse health effects observed in adults exposed to higher than normal levels of molybdenum would also be observed in children; however, it is not known if children would be more susceptible to the toxicity of molybdenum than adults. https://www.atsdr.cdc.gov/toxpr ofiles/tp212-c1.pdf	Cardiovascular Effects. There has been reposted a significant positive association between urinary molybdenum levels and high blood pressure among adults https://www.atsdr.cdc.gov/toxprofil es/tp212-c3.pdf Urinary (Renal) Effects: Several studies reported alterations in serum and urinary parameters that could be suggestive of altered renal function. https://www.atsdr.cdc.gov/toxprofil es/tp212-c3.pdf		
Nickel	7440-02-0	2.00E-02	IRIS 1991. Animal study - decreased body and organ weights. Rat chronic oral study. Ambrose et al., 1976. Uncertainty factor - 300	Primary targets of toxicity appear to be the immune system and possibly the reproductive system and the developing organism following oral exposure. https://www.atsdr.cdc.gov/toxprofile s/tp15.pdf	It is likely that the health effects seen in children exposed to nickel will be similar to the effects seen in adults. We do not know whether children differ from adults in their susceptibility to nickel. Human studies that examined whether nickel can harm the developing fetus are inconclusive. https://www.atsdr.cdc.gov/toxpr ofiles/tp15.pdf	Developmental Effects. Body weights in the high-dose male and female rats were significantly decreased compared with controls NOTE: In addition to the effects on organ weights described in the critical study, two other sensitive endpoints exist: neonatal mortality and dermatotoxicity. While no reproductive effects have been associated with nickel exposure to humans, several studies in laboratory animals have demonstrated fetotoxicity.		

Table 5-4 (continued).

		Noncancer Chronic Toxicity Values		Toxicity Basis			
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome	
Selenium	7782-49-2	5.00E-03	IRIS 1991. Human epidemiological study. Clinical selenosis. Yang et al., 1989. Uncertainty factor - 3	Selenium distributes into many organs, but generally higher concentrations are found in the liver and kidneys. However, the liver appears to be the primary target organ for the oral toxicity of selenium in experimental animals following intermediate and chronic exposure. https://www.atsdr.cdc.gov/toxprofile s/tp92.pdf	Children will probably show the same sort of health effects from selenium exposure as adults, but some studies suggest that they may be less susceptible to health effects of selenium than adults. NOTE: Studies of selenium deficient populations suggest that children are more susceptible to the effects of selenium deficiency and have the highest need for selenium of any individuals in the population. https://www.atsdr.cdc.gov/toxpr ofiles/tp92.pdf	Dermal Effects; Hematological Effects; Nervous System Effects. Clinical signs observed included the characteristic "garlic odor" of excess selenium excretion in the breath and urine, thickened and brittle nails, hair and nail loss, lowered hemoglobin levels, mottled teeth, skin lesions and CNS abnormalities (peripheral anesthesia, acroparesthesia and pain in the extremities).	
Silver	7440-22-4	5.00E-03	IRIS 1991. 2- to 9-year human i.v. study. Argyria. Gaul and Staud, 1935. Uncertainty factor - 3	Insufficient data exist to establish a target organ/tissue.	Lack of sufficient information to know if children are more susceptible to silver toxicity than adults	Dermal Effects. The dermal effect is argyria, a medically benign but permanent bluish-gray discoloration of the skin. Cardiovascular and Hepatobiliary Effects. Toxic effects of silver have also been reported for the cardiovascular and hepatic systems. Olcott, C.T. 1950. Experimental argyrosis. V. Hypertrophy of the left ventricule of the heart in rats ingesting silver salts. Arch. Pathol. 49: 138-149.	

Table 5-4 (continued).

		Noncan	cer Chronic Toxicity Values	Toxicity Basis			
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome	
Thallium	7440-28-0	1.00E-05	PPTRV value; U.S. EPA 2018. Based on animal studies. NOAEL for adverse observations of coat and eyes in experimental animals. Uncertainty Factor = 3000	The highest thallium concentrations have typically been found in the kidney and the lowest concentrations in the brain. https://cfpub.epa.gov/ncea/iris/iris_d ocuments/documents/toxreviews/10 12tr.pdf Limited data on human and animal acute oral exposure to thallium suggests that the nervous system may be the target organ. https://www.atsdr.cdc.gov/toxprofile s/tp54.pdf	Children ages 1-11 years. Both male and female. Reed, D; Crawley, J; Faro, SN; et al. (1963) Thallotoxicosis. JAMA 183(7):516–522.	Nervous System and Developmental Effects. Neurological abnormalities; retardation; psychosis; death NOTE: Dose unknown Reed, D; Crawley, J; Faro, SN; et al. (1963) Thallotoxicosis. JAMA 183(7):516–522.	
Vanadium	7440-62-2	5.00E-03	Based on Vanadium Pentoxide, adjusted for molecular weight (EPA 2017). RfD for Vanadium Pentoxide is dermal effects in experimental animals and has an uncertainty factor of 100.	Target: gastrointestinal tract, hematological system, and developing organism	The health effects seen in children from exposure to toxic levels of vanadium are expected to be similar to the effects seen in adults. It is not known if children are more sensitive to vanadium toxicity than adults. It is not known whether vanadium can cause birth defects in people. However, studies in animals exposed during pregnancy have shown that vanadium can cause decreases in growth and increases in the occurrence of birth defects. https://www.atsdr.cdc.gov/phs/phs.asp?id=274&tid=50	Gastrointestinal Effects. The limited data available for assessing gastrointestinal effects suggest that exposure to vanadium may cause mild gastrointestinal irritation. Hematological, Cardiovascular, Neurological, and Developmental Effects. A number of effects have been found in rats and mice ingesting several vanadium compounds. The effects include: Decreases in number of red blood cells Increased blood pressure Mild neurological effects Developmental effects in animals https://www.atsdr.cdc.gov/phs/phs.asp?id=274&tid=50	

Table 5-4 (continued).

		Noncand	er Chronic Toxicity Values	Toxicity Basis				
Chemical	CAS No.	Chronic RfD mg/kg-day	Basis of Chronic RfD	Target (organ/tissue)	Sensitive Life Stage	Health Effect/Outcome		
Zinc	7440-66-6	3.00E-01	IRIS 2005. Human studies - Decreases in erythrocyte Cu, Zn- superoxide dismutase (ESOD) activity in healthy male and female volunteers. Uncertainty factor - 3	Oral animal studies have identified several critical targets of zinc toxicity. These are: Alterations in copper status Hematology** Kidneys Pancreas Gastrointestinal tract	Data in humans are not available that examine whether children are more susceptible to the toxicity of zinc than adults. However, the RDA for children, expressed in terms of mg/kg-day, is greater than that for adults. Animal studies have, however, suggested that neonates and/or developing animals may be more susceptible to the toxic effects of excess zinc. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0426tr.pdf	Hematological Effects: The most sensitive effects of oral exposure to excess zinc in humans involve the copper status of the body. Zinc exposure can result in a decreased absorption of copper, leading to low systemic copper levels and subsequent health effects https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0426tr.pdf		

Table 5-5. Toxicity reference values and screening levels for agricultural receptors in calculating AWQC

		Screening Levels								
Metal	CAS No.	Water- Cattle and Sheep (mg/L)	Source	Soil – Plants (mg/kg)	Source	Tolerable level (Cattle) (mg/kg – day)	Source	Tolerable level (Sheep) (mg/kg – day)	Source	
Aluminum	7429-90-5	NA	NA	50	2	38.14	4	55.57	4	
Antimony	7440-36-0	NA	NA	5	2	0.35	6	0.35	6	
Arsenic	7440-38-2	1	4	18	1	1.42	3,4	0.98	3,4	
Barium	7440-39-3	NA	NA	500	2	15.00	4	15.00	6	
Beryllium	7440-41-7	NA	NA	10	2	0.54	6	0.54	6	
Cadmium	7440-43-9	NA	NA	32	1	0.47	4	0.33	4	
Chromium	7440-47-3	NA	NA	1	2	4.72	4	3.28	4	
Cobalt	7440-48-4	NA	NA	13	1	1.18	4	0.82	4	
Copper	7440-50-8	NA	NA	70	1	1.89	4	0.49	5	
Iron	7439-89-6	NA	NA	NA	NA	23.60	4	16.40	4	
Lead	7439-92-1	NA	NA	120	1	4.72	4	3.28	4	
Manganese	7439-96-5	NA	NA	220	1	94.41	4	65.59	4	
Mercury	7439-97-6	NA	NA	0.30	2	0.09	4	0.07	4	
Molybdenum	7439-98-7	NA	NA	2	2	0.24	4	0.16	4	
Nickel	7440-02-0	NA	NA	38	1	4.72	4	3.28	4	
Potassium	7440-09-7	NA	NA	NA	NA	944.12	4	655.88	4	
Selenium	7782-49-2	NA	NA	0.52	1	0.24	4	0.16	4	
Silver	7440-22-4	NA	NA	560	1	222.00	6	222.00	6	
Thallium	7440-28-0	NA	NA	1	2	1.80	4	1.80	6	
Vanadium	7440-62-2	NA	NA	2	2	2.36	4	1.64	4	
Zinc	7440-66-6	NA	NA	160	1	23.60	4	9.84	4	

NA = Not Available

Sources:

- 1) Eco SSLs, U.S. EPA
- 2) Efroymson et al. 1997
- 3) Ford and Beyer 2014
- 4) Maximum tolerable levels in feed (NRC 2005), adjusted for body weight intake to estimate toxicity reference value. Food ingestion rate from Ford and Beyer 2014, and water ingestion rates for beef cattle and sheep are from NRCS 2003. Body weights are from Ford and Beyer 2014.
- 5) Laboratory animal studies as referenced in U.S. EPA Integrated Risk Information System and ATSDR Toxicity Profiles

6. Calculation of Protective Metal Thresholds for Agricultural Uses

6.1. Agricultural Water Quality Standards

Water supplies may be used for agricultural irrigation and livestock watering as shown in the CSM, creating the exposure pathways of:

- 1. Direct ingestion of water by livestock. Cattle and sheep were evaluated for direct ingestion of water used as a water supply to determine potential impacts to livestock health and to model intake by human receptors through consumption of beef. AWQC for livestock for total metals in water were based on toxicity information and exposure information selected from Raisbeck et al. 2007, Raisbeck et al. 2011, and NRCS 2003 and Ford and Beyer 2014; and NRC 2005.
- **2. Exposure to crops through irrigation.** Water use for irrigation of crops or pastures that allowed uptake to vegetation (subsequently fed to livestock) and deposition of metals in soils that could be ingested by livestock was evaluated;
- 3. Ingestion of irrigated plants by livestock;
- 4. Accumulation of metals in soils from irrigation water with subsequent incidental soil ingestion by livestock;
- **5. Ingestion of homegrown produce and meat products by humans.** This evaluation includes an estimate of intake by humans of livestock and plants and involves estimating a tissue concentration in agricultural products from uptake of metals through water, soil, and feed. It is evaluated in Section 6.2.2 below.

As there is no standard guidance for performing an agricultural risk assessment, the conventional risk assessment paradigm was used, including identifying toxicity information (i.e., hazard identification and dose-response assessment of each metal), exposure assessment, and risk characterization to calculate an acceptable water concentration based on the endpoint of interest. These components are integrated into an approach that is similar to that used for water quality guidelines for humans.

Section 6.1.1 describes the method used to assess water quality for agricultural receptors. Section 6.1.2 presents the AWQC for plants and livestock.

6.1.1. Method

The agricultural AWQC assessment determined AWQC that are acceptable for crops and for livestock. Both are toxicity-based assessments, with plant toxicity being determined from a soil concentration and livestock toxicity from toxicity reference values.

Toxicity of water to plants is based on the amount of metal that is applied to the soil. The amount of water applied to an acre of crop/pasture land was determined from USGS 2015 data for San Juan County, New Mexico (USGS 2019). Per USGS information, 10.81 thousand acre-feet per year of water was used for surface irrigation. This may not capture all surface water irrigation uses, as it excludes sprinkler-supplied water; however, sprinkler-supplied water may be filtered before use. This analysis provides estimates of total metal concentration in water and does not consider filtration. This is to address the possibility of unrestricted access to surface water by livestock for watering, and to address the use of water for irrigating crops or pasture land that are subsequently fed to livestock. The amount

of water applied to one acre was determined using the estimated acreage of farmland in San Juan County NM in 2012 (USDA 2012) of 2,580,319 acres.

Potential soil concentrations were estimated by using the conservative assumption that all metal contained in the water applied over a time period of 1 year would remain in the irrigated soil. The depth of the potentially impacted soil was set to 6 inches (0.15 m) to approximate a tillage depth for crops, and this value was used as a mixing zone depth for the metals in irrigation water that would accumulate in soils. Note that the estimate includes only the incremental increase potentially related to use of water for irrigation and does not include background soil concentrations for these COPCs; thus, it is not an assessment of total risk but instead is an incremental risk estimate.

Estimate of Metal Concentrations in Soil

This water usage and acreage were converted to 0.00013 L/cm2 per year, then multiplied by the amount of each metal in water (mg/L) and divided by 15 cm (6 inches) to estimate the average amount of the metal in surface soil, accounting for the tillage depth. The value was converted to units of mg/kg by multiplying by the soil density (g/cm3). Soils were assumed to be sandy-loam based on the samples obtained from Navajo staff and summarized in Section 4.2.3 of this report. For the purposes of modeling a concentration in soil from use of irrigation water, a soil density of 1.6 g/cm3 was used (USDA 2003). The equation is as follows:

```
Soil Concentration (mg/kg) = Cw \times WC/D \times SD
```

Where:

```
Cw = Concentration in water (mg/L)

WC = Water Consumption (average annual irrigation rate) (0.00013 L/cm^2)

D = Depth of tillage (15 cm)

SD = Soil Density (kg/cm^3)
```

The calculated amount of metal residual in soil was used to estimate the amount that may be taken up into plants and incidentally ingested by livestock while foraging. Estimates were based on 1 year of irrigation, and do not include any loss of metals from soil due to soil erosion, uptake, or other factors.

AWQC for Crops/Pasture

As no additional information was found regarding direct toxicity to plants from metals in water, the values recommended by U.S. EPA (NAS & NAE 1972) were adopted for use.

In addition, accumulation of metals in soils was estimated, and evaluated for potential toxicity to plants. Hazards were estimated from the ratio of the maximum calculated concentrations to plant soil screening levels and used to estimate potential hazard associated with exposure to metals in unfiltered surface water:

```
Hazard = Cmedia / SL
```

Where

```
Cmedia = Concentration in soil (mg/kg)

SL = Screening Level (mg/kg)
```

The maxiumum AWQC (Table 6-1. Water Concentration that would result in a soil concentration that poses toxicity to plants) reflects the water concentration that produced a soil concentration with a ratio of 1 to the plant soil screening level. Note that this value is an incremental amount to soil and is based on one year of accumulation. These values can be divided by an exposure duration (in years) to estimate an allowable water concentration that will not exceed plant screening level for soil over the desired number of years. For example, the AWQC for 50 years would be the listed AWQC divided by 50.

6.1.2. Water Quality Standards for Plants and Livestock

Water quality standards for cattle and sheep were first calculated assuming intake of all water from a surface water body. The soil ingestion rates, feed ingestion rate, and body weights of cattle and sheep were selected from Ford and Beyer (2014) and water ingestion rates are from NRCS (2003). Toxicity reference values were derived from Maximum tolerable levels in feed, as well as toxicity information for some metals that are not allowable in feed. The body weight, toxicity reference value, and water ingestion rate were used in the following equation:

AWQC (mg/L) = Toxicity Value $(mg/kg-d) \times Body$ weight (kg)

Ingestion Rate water (L/d)

The AWQC for water ingestion only is presented in Table 6-3. AWQC for cattle from water ingestion alone and for combined water, soil, and crop ingestion for cattle

To calculate a total risk-based AWQC for cattle and sheep, soil concentrations were estimated using the same process as for crops and pasture land. The soil concentration was used to calculate the amount of uptake by plants (using bioaccumulation factors in Table 5-3), as well as being a direct exposure to livestock through soil ingestion. Ingestion of pasture/crop feed and soil were then estimated, and a hazard index calculated using the toxicity reference values. The AWQC corresponds to a hazard index of 1 through all exposure pathways.

In addition, the total estimated tissue concentration of each metal in cattle and sheep from water and irrigated pasture and crops was calculated. This calculation uses the total amount of metal ingested and a bioaccumulation factor (Baes et al., 1984) to estimate a potential total tissue concentration. This estimate is used in the evaluation of human exposures.

Water quality standards were developed for livestock by a forward calculation of potential hazards. The acceptable AWQC was that corresponding to an exposure with a ratio of 1.0 to the toxicity reference value.

6.1.3. Exposure to Livestock Through Drinking Water.

Inputs to the AWQC calculation for plants, cattle, and sheep are presented in

Table 6-2 through Table 6-4 respectively. Soil and food ingestion rates were those used in Ford and Beyer 2014. Food ingestion rates for sheep and cattle were presented as dry weight values and were converted to wet weight using a weighted average dry-to-wet weight conversion value of 0.888 from Baes et al. 1984. Water ingestion rates were selected from NRCS 2003 and represent upper end of the range presented in that report to account for variation in water needs due to temperature fluctuations and activity over the course of a year in an arid climate. Uptake factors for bioaccumulation of COPCs are from ORNL 2019 and Baes et al. 1984.

6.1.4. Agriculture Risk-Based AWQC

Table 6-1 presents the calculation of soil concentration from concentrations in irrigation water. The irrigation water values represent those that would (in one year) cause soil concentrations to equal levels considered toxic to plants. This calculation is repeated in for plants and livestock evaluations, using the different inputs for water concentrations. The AWQC in Table 6-1. Water Concentration that would result in a soil concentration that poses toxicity to plantsare the highest of all AWQC calculated, as metals accumulate in soils are less toxic to plants than animals. These values ignore the effect of metals in water on the plant itself and are intended to show only accumulation potential of metals to soils.

Table 6-2 shows AWQC values for crops or plants (NAS & NAE 1972) and estimates the potential for metals to accumulate in soils.

Table 6-3 presents the AWQC for cattle from water ingestion alone and for combined water, soil, and crop ingestion for cattle. As is associated with an AWQC of 7.2 mg/L for cattle. This is based on noncarcinogenic effects to the animal, as carcinogenic effects are not considered for livestock. However, it indicates that As is a metal that can have negative effects to cattle at a low level in water.

Table 6-4 contains the AWQC for sheep from water ingestion alone and for combined water, soil, and crop ingestion. This analysis assumed that sheep uptake factors were the same as those for cattle because no bioaccumulation factors specific to sheep were identified. However, lower ingestion rates for soil and water were assumed (NRCS 2003) as well as a lower body weight. Overall, the AWQC calculated for sheep are lower than those for cattle.

Both Table 6-3 and Table 6-4 present the tissue concentration of metals in edible meat from cattle and sheep that have been exposed through consumption of water, irrigated crops, and soil. These values were used in estimated human exposure to meat products, described in Section 6.2 below.

Table 6-1. Water Concentration that would result in a soil concentration that poses toxicity to plants

	Predicte	Predicted Soil Concentrations from Surface Water for Irrigation- Crops										
Chemical	Water Concentration (µg/L)	Water Concentration (mg/L)	Amount Applied to 1 cm2 x 15 cm depth of Soil in 1 Year (mg/cm3)	Soil Concentration 1 Year through 15 cm depth (mg/kg)	Plant Toxicity- based Screening Concentration for Soil (mg/kg)							
Aluminum	9430000	9430	0.08	49.5	50							
Antimony	943000	943	0.008	4.95	5							
Arsenic	3400000	3400	0.029	17.9	18.00							
Barium	94000000	94000	0.8	494	500.00							
Beryllium	1900000	1900	0.016	9.98	10.00							
Cadmium	6000000	6000	0.051	31.5	32							
Chromium	190000	190	0.002	1.0	1							
Cobalt	2450000	2450	0.021	12.9								
Copper	13000000	13000	0.111	68.3	70							
Iron	1800000	1800	0.015	9	10							
Lead	22500000	22500	0.192	118	120							
Manganese	41000000	41000	0.349	215	220							
Mercury	56000	56	0.0005	0.294	0.30							
Molybdenum	380000	380	0.003	2	2.00							
Nickel	7200000	7200	0.061	37.8	38.00							
Selenium	98000	98	0.001	0.52	0.52							
Silver	105000000	105000	0.894	552	560							
Thallium	190000	190	0.002	1.0	1							
Vanadium	380000	380	0.003	2	2							
Zinc	3000000	30000	0.255	158	160							

Water Screening Values from U.S. EPA 1972 (NAS & NAE 1972) with the following exceptions: AWQC values for Sb, Ba, and Ag were derived from the criteria for AL based on relative toxicity in soil; AWQC values for Tl and Hg were derived from Cr based on relative toxicity in soil.

Table 6-2. Ambient water quality standards based on toxicity to crops.

			Maximum P		Ratio of Soil					
Metals	AWQC (μg/L) (1)	AWQC (mg/L)	Amount Applied to 1 cm2 of Soil in 1 Year (mg/cm3)	Amount contained in 1 cm2 x 15 cm depth of Soil in 1 Year (mg/cm3)	Soil Concentration 1 Year (mg/kg)	Plant BAF	Concentration in Plants (mg/kg)	Plant Toxicity-based Screening Concentration for Soil (mg/kg)	Concentration to Plant Screening Level	
					Metals					
Aluminum	5,000	5	6.38E-04	4.26E-05	0.0266	0.001	2.66E-05	50.00	0.000001	
Antimony	500	0.5	6.38E-05	4.26E-06	0.0027	0.05	1.33E-04	5.00	0.000027	
Arsenic	1,000	1	1.28E-04	8.51E-06	0.0053	0.01	5.32E-05	18.00	0.000003	
Barium	50,000	50	6.38E-03	4.26E-04	0.2660	0.0375	9.98E-03	500.00	0.000020	
Beryllium	100	0.1	1.28E-05	8.51E-07	0.0005	0.0025	1.33E-06	10.00	0.000000	
Cadmium	10	0.01	1.28E-06	8.51E-08	0.0001	0.1375	7.32E-06	32.00	0.000000	
Chromium	100	0.1	1.28E-05	8.51E-07	0.0005	0.001875	9.98E-07	1.00	0.000001	
Cobalt	1,000	1	1.28E-04	8.51E-06	0.0053	0.005	2.66E-05	13.00	0.000002	
Copper	200	0.2	2.55E-05	1.70E-06	0.0011	0.1	1.06E-04	70.00	0.000002	
Iron	5,000	5	6.38E-04	4.26E-05	0.0266	0.001	2.66E-05	NA	0.000003	
Lead	5,000	5	6.38E-04	4.26E-05	0.0266	0.01125	2.99E-04	120.00	0.000002	
Manganese	200	0.2	2.55E-05	1.70E-06	0.0011	0.0625	6.65E-05	220.00	0.000000	
Mercury	30	0.03	3.83E-06	2.55E-07	0.0002	0.225	3.59E-05	0.30	0.000120	
Molybdenum	10	0.01	1.28E-06	8.51E-08	0.0001	0.0625	3.33E-06	2.00	0.000002	
Nickel	200	0.2	2.55E-05	1.70E-06	0.0011	0.015	1.60E-05	38.00	0.000000	
Selenium	20	0.02	2.55E-06	1.70E-07	0.0001	0.00625	6.65E-07	0.52	0.000001	
Silver	56,000	56	7.15E-03	4.77E-04	0.2979	0.1	2.98E-02	560.00	0.000053	
Thallium	100	0.1	1.28E-05	8.51E-07	0.0005	0.001	5.32E-07	1.00	0.000001	
Vanadium	100	0.1	1.28E-05	8.51E-07	0.0005	0.001375	7.32E-07	2.00	0.000000	
Zinc	2,000	2	2.55E-04	1.70E-05	0.0106	0.264	2.81E-03	160.00	0.000018	

ND = Not Detected

NA = Not Available

BAFs are for wet-weight plants (ORNL 2018)

Plant concentration (mg/k) = Soil Concentration * BAF (wet weight)

Screening concentrations are from Efroymson et al., 1997 and U.S. EPA Ecological Screening Levels (2005-2007)

⁽¹⁾ Estimated maximum concentration based on accumulation of metals in soil and subsequent toxicity to plants over 1 year

Table 6-3. AWQC for cattle from water ingestion alone and for combined water, soil, and crop ingestion for cattle

Maximum Predicted Soil Concentrations from Irrigation											2.		
Chemical	Water Quality Concentration (mg/L)	Soil Concentration 1 Year (mg/kg)	Plant BAF	Uptake to Alfalfa (BAF * Soil concentration) Wet weight Conc	Intake from food and soil (Cattle) mg/kg- day	intake from Water (Cattle) (mg/kg- day)	Beef transfer coefficient	Tissue concentration from food and soil (Cattle) mg/kg	Tissue Concentration from Water Uptake (Cattle) (mg/kg)	Total Concentration in Cattle (mg/kg)	Tolerable Level (mg/kg- day)	Hazard Index for Soil, Feed and Water Ingestion	Water Screening Levels for cattle (water only) (mg/L)
Aluminum	190	1.01	0.001	1.01E-03	3.51E-03	3.80E+01	0.0015	5.26E-06	5.70E-02	5.70E-02	38.14	1	190.72
Antimony	1.8	0.01	0.05	4.79E-04	5.11E-05	3.60E-01	0.001	5.11E-08	3.60E-04	3.60E-04	0.35	1	1.75
Arsenic	7.2	0.04	0.01	3.83E-04	1.46E-04	1.44E+00	0.002	2.92E-07	2.88E-03	2.88E-03	1.42	1	7.08
Barium	75	0.40	0.0375	1.50E-02	1.94E-03	1.50E+01	0.00015	2.91E-07	2.25E-03	2.25E-03	15	1	75.00
Beryllium	2.8	0.01	0.0025	3.72E-05	5.26E-05	5.60E-01	0.001	5.26E-08	5.60E-04	5.60E-04	0.54	1	2.70
Cadmium	2.3	0.01	0.1375	1.68E-03	1.06E-04	4.60E-01	0.00055	5.84E-08	2.53E-04	2.53E-04	0.47	1	2.36
Chromium	24	0.13	0.0019	2.39E-04	4.47E-04	4.80E+00	0.0055	2.46E-06	2.64E-02	2.64E-02	4.72	1	23.60
Cobalt	6	0.03	0.005	1.60E-04	1.16E-04	1.20E+00	0.02	2.31E-06	2.40E-02	2.40E-02	1.18	1	5.90
Copper	9.8	0.05	0.1	5.21E-03	3.78E-04	1.96E+00	0.01	3.78E-06	1.96E-02	1.96E-02	1.89	1	9.44
Iron	120	0.64	0.001	6.38E-04	2.22E-03	2.40E+01	0.02	4.43E-05	4.80E-01	4.80E-01	23.6	1	118.01
Lead	23	0.12	0.0113	1.38E-03	4.73E-04	4.60E+00	0.0004	1.89E-07	1.84E-03	1.84E-03	4.72	1	23.60
Manganese	490	2.61	0.0625	1.63E-01	1.52E-02	9.80E+01	0.0004	6.07E-06	3.92E-02	3.92E-02	94.41	1	472.06
Mercury	0.45	0.00	0.225	5.39E-04	2.88E-05	9.00E-02	0.25	7.19E-06	2.25E-02	2.25E-02	0.09	1	0.47
Molybdenum	1.2	0.01	0.0625	3.99E-04	3.71E-05	2.40E-01	0.006	2.23E-07	1.44E-03	1.44E-03	0.24	1	1.18
Nickel	24	0.13	0.015	1.92E-03	5.11E-04	4.80E+00	0.006	3.07E-06	2.88E-02	2.88E-02	4.72	1	23.60
Selenium	1.2	0.01	0.0063	3.99E-05	2.34E-05	2.40E-01	0.015	3.52E-07	3.60E-03	3.60E-03	0.24	1	1.18
Silver	1100	5.85	0.1	5.85E-01	4.24E-02	2.20E+02	0.003	1.27E-04	6.60E-01	6.60E-01	222	1	1110.00
Thallium	9	0.05	0.001	4.79E-05	1.66E-04	1.80E+00	0.04	6.65E-06	7.20E-02	7.20E-02	1.8	1	9.00
Vanadium	12	0.06	0.0014	8.78E-05	2.23E-04	2.40E+00	0.0025	5.56E-07	6.00E-03	6.00E-03	2.36	1	11.80
Zinc	120	0.64	0.264	1.69E-01	8.62E-03	2.40E+01	0.1	8.62E-04	2.40E+00	2.40E+00	23.6	1	118.01

Table 6-3 (continued).

Assumptions:

Soil ingestion rate and food ingestion rate from Ford and Beyer 2014, and water ingestion rates for beef cattle and sheep are from NRCS 2003.

[(Ingestion rate food*concentration in plants + Concentration in soil * Ingestion Rate soil) *BAF]

(Water ingestion * water concentration) *BAF

Beef: 272 kg

Soil Ingestion: 0.93375 kg/day

Food Ingestion: 10.38 kg/day (weighted dry to wet conversion factor of 0.888 for grains – Baes et al. 1984)

Water Ingestion: 54.4 L/day (20% of body weight)

Table 6-4. AWQC for sheep from water ingestion alone and for combined water, soil, and crop ingestion

Maximum Predicted Soil Concentrations from Irrigation														
Chemical	Water Concentration (mg/L)	Soil Concentration 1 Year (mg/kg)	Plant BAF	Uptake to Alfalfa (BAF * Soil concentration) Wet weight Conc	Transfer coefficient	Uptake by sheep [(IR wet wt plants + IR soil)]/BW	Water Uptake by Sheep (mg/kg- day)	Total Uptake in Sheep (mg/kg-day)	Tissue concentration from food and soil (uptake x BAF) (Sheep) mg/kg (1)	Tissue Concentration from Water Uptake (uptake x BAF) (Sheep) (mg/kg)	Total Concentration in Sheep	Toxicity Value (mg/kg- day)	Hazard Index	Water Screening Value (mg/L)
Aluminum	170	0.90	0.001	9.04E-04	0.0015	0.0048	37.75	37.75	7.24E-06	5.66E-02	5.66E-02	38.14	1	1511.46
Antimony	1.6	0.01	0.05	4.26E-04	0.001	0.0001	0.36	0.36	6.86E-08	3.55E-04	3.55E-04	0.35	1	NA
Arsenic	4.5	0.02	0.01	2.39E-04	0.002	0.0001	1.00	1.00	2.79E-07	2.00E-03	2.00E-03	0.98	1	26.76
Barium	65	0.35	0.0375	1.30E-02	0.00015	0.0025	14.43	14.44	3.82E-07	2.17E-03	2.17E-03	15	1	408
Beryllium	2.5	0.01	0.0025	3.33E-05	0.001	0.0001	0.56	0.56	7.21E-08	5.55E-04	5.55E-04	0.54	1	14.69
Cadmium	1.5	0.01	0.1375	1.10E-03	0.00055	0.0001	0.33	0.33	5.67E-08	1.83E-04	1.83E-04	0.33	1	8.92
Chromium	15	0.08	0.001875	1.50E-04	0.0055	0.0004	3.33	3.33	2.36E-06	1.83E-02	1.83E-02	3.28	1	89.2
Cobalt	3.8	0.02	0.005	1.01E-04	0.02	0.0001	0.84	0.84	2.25E-06	1.69E-02	1.69E-02	0.82	1	22.3
Copper	2.2	0.01	0.1	1.17E-03	0.01	0.0001	0.49	0.49	1.27E-06	4.89E-03	4.89E-03	0.49	1	13.38
Iron	75	0.40	0.001	3.99E-04	0.02	0.0021	16.65	16.66	4.26E-05	3.33E-01	3.33E-01	16.4	1	446
Lead	15	0.08	0.01125	8.98E-04	0.0004	0.0005	3.33	3.33	1.88E-07	1.33E-03	1.33E-03	3.28	1	89.2
Manganese	300	1.60	0.0625	9.98E-02	0.0004	0.0140	66.62	66.63	5.59E-06	2.66E-02	2.67E-02	65.59	1	1784
Mercury	0.3	0.00	0.225	3.59E-04	0.25	0.0000	0.07	0.07	7.10E-06	1.67E-02	1.67E-02	0.07	1	1.78
Molybdenum	0.75	0.00	0.0625	2.49E-04	0.006	0.0000	0.17	0.17	2.10E-07	9.99E-04	9.99E-04	0.16	1	4.46
Nickel	15	0.08	0.015	1.20E-03	0.006	0.0005	3.33	3.33	2.93E-06	2.00E-02	2.00E-02	3.28	1	89.2
Selenium	0.75	0.00	0.00625	2.49E-05	0.015	0.0000	0.17	0.17	3.37E-07	2.50E-03	2.50E-03	0.16	1	4.46
Silver	1000	5.32	0.1	5.32E-01	0.003	0.0576	222.06	222.12	1.73E-04	6.66E-01	6.66E-01	222	1	6038.4
Thallium	8	0.04	0.001	4.26E-05	0.04	0.0002	1.78	1.78	9.08E-06	7.11E-02	7.11E-02	1.8	1	48.96
Vanadium	7.5	0.04	0.001375	5.49E-05	0.0025	0.0002	1.67	1.67	5.34E-07	4.16E-03	4.16E-03	1.64	1	44.6
Zinc	45	0.24	0.264	6.32E-02	0.1	0.0048	9.99	10.00	4.78E-04	9.99E-01	1.00E+00	9.84	1	267.6

Table 6-4 (continued).

(1) Water quality value from NRCS 2003

Assumptions:

Beef transfer coefficient used for sheep

Soil ingestion rate and food ingestion rate from Ford and Beyer 2014, and water ingestion rates for beef cattle and sheep are from NRCS 2003.

Tissue concentration from food and soil ingestion calculation: [(Ingestion rate food*concentration in plants + Concentration in soil * Ingestion Rate soil)*BAF]

Tissue concentration from water ingestion calculation: (Water ingestion * water concentration) *BAF

Sheep: 68

Soil ingestion: 0.31 (9.5% of feed)

Food Ingestion: 3.78 kg weighted dry to wet conversion factor of 0.888 for grains (Baes et al. 1984)

Water Ingestion: 4L (2) Water screening value is for nitrate (Raisbeck et al. 2007)

Toxicity Values were estimated using maximum tolerable levels in feed (mg metal/kg feed)

assuming that 1 L = 1 kg, and ingestion of 3.78 kg feed/day, and BW of 68 kg

(1) Estimated maximum concentration based on accumulation of metals in soil and subsequent toxicity to livestock over 1 year.

6.2. Human Health Risk Based Ambient Water Quality Standards

Human health-based AWQC, presented in Table 6-5 through Table 6-8, were calculated individually for each receptor and pathway then combined as the inverse sum of the inverse to estimate one water quality standard that encompasses all receptors and exposure pathways. The methods used for the development of human health-risk based AWQC are described below. The receptor-specific AWQS standards are combined and presented in Section 6.2.2.

6.2.1. Methods

Three methodologies were used to calculate human exposure to metals through water: domestic ingestion of water; consumption of homegrown produce; and consumption of homegrown meat products. Each is described below.

Domestic Water Ingestion

The following equation from U.S. EPA 2000a (discussed in Section 4) was used to calculate a water quality criterion based on human ingestion of water:

AWQC (μ g/L) = toxicity value (mg/kg-d) × Body Weight (kg) × 1,000 (μ g/mg)

IR (L/d)

For this analysis, a child receptor was selected for setting AWQC to provide the most conservative estimate. Children have a higher intake of water per body weight than adults, resulting in an AWQC that is protective of adults and children. As noted in Table 5-2, the body weight of a child is 15 kg and the ingestion rate used was 1 L/day, the 95th percentile of water ingestion rate for children (U.S. EPA 2011).

Consumption of Homegrown Fruits and Vegetables

To evaluate the consumption of metals through water used for irrigating a home garden, the concentration in water corresponding to a hazard index of 1.0 based on produce ingestion was calculated.

To estimate the amount of metals that could be applied to soils through irrigation, it was assumed that water would be applied to soil at a rate of 187 gallons per day to a 750 square foot garden (69.7 m2) (NMSU 2011). It was estimated that a garden would be irrigated 122 days, or every third day throughout the year. The tilling depth was assumed to by 6 inches (15 cm) to determine a volumetric content of metals in soil from irrigation water. The volumetric content was converted to a concentration by using a soil density of 1.6 g/cm3, the density of loam to sandy-loam soil (U.S. EPA 2017). Then, the bioaccumulation factor was used to estimate the amount of metal that would be aggregated to the reproductive parts of the plant (such as corn, squash, or melon).

The concentration in the produce was then used to estimate a daily intake of each metal by humans, and the toxicity value was used to determine the hazard. Metal intake from consumption of homegrown produce was calculated based on intake rates of 41.7 g/day of vegetables and 68.1 g/day of fruit by a child, with a body weight of 15 kg.

Consumption of Homegrown Meat

After determining the exposure of cattle and sheep to metals through feed and water, a tissue concentration was estimated using bioaccumulation factors from Baes et al. 1984. The tissue

concentration was used in determining the human-health based AWQC as a contributor to overall exposure.

The following equation was used to calculate the contribution of homegrown meat products to overall exposure:

Hazard = IR $_{meat}$ x EF x ED x CF / BW x AT

Where:

 IR_{meat} = Intake rate of homegrown meat products (54 g/day)

EF = Exposure Frequency (350 days/year)

ED = Exposure Duration (6 years)

CF = Conversion Factor (1E-6 kg/mg)

BW = Body Weight (15 kg)

AT = 2190 days (365 days per year for 6 years)

The beef ingestion hazard indices were calculated using a beef ingestion of 54 g/day (about 2 ounces) by a child, 350 days per year. The higher of beef or sheep tissue concentrations was used as the exposure concentration. The assessment focused on children as the most sensitive receptor.

Total AWOC

To account for all pathways in the AWQC, the following equation was used:

AWQC total = 1/SUM

Where:

SUM = (1/(AWQC-Domestic water)) + (1/(AWQC-from produce consumption)) + (1/(AWQC-from produce consumption)

where

AWQC domestic water: risk-based WQC for human direct pathways (ingestion)

AWQC from produce consumption: risk-based WQC for human consumption of homegrown produce

AWQC from consumption of livestock: risk-based WQC from consumption of homegrown meat products

AWQC were based on a noncarcinogenic hazard of 1.0, or cancer risk of 1E-6 for As only. The total AWQC for humans is presented in Table 6-8.

6.2.2. Water Quality Standards calculations

Domestic water use

The results of the AWQC calculations based on domestic water use (ingestion of water) are shown in Table 6-5. These values represent total metal concentration in water that would be acceptable for use

by all humans of all ages for a domestic water supply. Note that the value for As is presented based on noncarcinogenic and carcinogenic endpoints. The value for the carcinogenic endpoint is lower and will be protective of noncarcinogenic effects.

In addition, no calculation was performed for Pb. Pb is evaluated differently than other metals, and the U.S. EPA Maximum Contaminant Level for Pb of 15 μ g/L is set to be protective of children. The MCL for Pb was used as the AWQC in this report.

Table 6-5. AWQC for Humans based on Domestic Water Use.

	Ex	posure Paramete	irs		
Metal	Toxicity Values (1)	Body Weight (kg)	Water Ingestion Rate (L/day)	AWQC (mg/L)	AWQC (ug/L)
Aluminum	1.0E+00	15	1	15	15000
Antimony	4.0E-04	15	1	0.006	6
	16.50	10.0	164		
Arsenic - noncarcinogenic	3.0E-04	15	1	0.005	5
Barium	2.0E-01	15	1	3	3000
Beryllium	2.0E-03	15	1	0.03	30
Cadmium	5.0E-04	15	1	0.008	8
Chromium	1.5E+00	15	1	23	22500
Cobalt	3.0E-04	15	1	0.005	5
Copper	4.0E-02	15	1	1	600
Iron	7.0E-01	15	1	11	10500
Lead	NA	NA	NA	0.015	15
Magnesium	NA	15	1		
Manganese	1.4E-01	15	1	2	2100
Mercury	3.0E-04	15	1	0.005	5
Molybdenum	5.0E-03	15	1	0.075	75
Nickel	2.0E-02	15	1	0.3	300
Potassium	NA	15	1		
Selenium	5.0E-03	15	1	0.075	75
Silver	5.0E-03	15	1	0.075	75
Sodium	NA	15	1		
Strontium	6.0E-01	15	1	9	9000
Thallium	1.0E-05	15	1	0.00015	0.15
Vanadium	5.0E-03	15	1	0.075	75
Zinc	3.0E-01	15	1	4.5	4500

Shaded results indicate that screening level is based on carcinogenic risk.

Consumption of Homegrown Fruits and Vegetables

As shown in Table 6-6, human consumption of homegrown produce results in AWQC that are higher than those of ingestion or water. These values were used in calculating a total AWQC as described in Section 4.3. These values are based on hazard to humans consuming homegrown produce, not on toxicity to plants. All are higher than AWQC based on domestic water ingestion and the toxicity-based AWQC for plants in Table 6-2 with the exception of the carcinogenic-based AWQC for As.

Table 6-6. AWQC based on human ingestion of homegrown produce

Chemical	Water Concentration (mg/L)	Amount Applied to 1 cm2 of Soil in 1 Year (mg/cm2)	Amount contained in 1 cm2 x 15 cm depth of Soil in 1 Year (mg/cm3)	Soil Concentrati on, 1 Year (mg/kg)	Plant BAF	Concentrat ion in Produce (mg/kg)	Exposure Estimate	Toxicity Value	Hazard Quotient (risk)
Aluminum	43000	5.33E+03	3.55E+02	219213.5	6.50E-04	1.42E+02	1.00E+00	1.00E+00	1
Antimony	0.37	4.58E-02	3.06E-03	1.91	0.03	5.73E-02	4.02E-04	4.00E-04	1
Arsenic	1.4	1.73E-01	1.16E-02	7.23	6.00E-03	4.34E-02	3.04E-04	3.00E-04	1
Arsens	0.000026	1000	2.000					3.5665+663	
Barium	370	4.58E+01	3.06E+00	1909.83	0.015	2.86E+01	2.01E-01	2.00E-01	1
Boron	336	3.41E-01	2.27E-02	14.22	2	2.84E+01	2.00E-01	2.00E-01	1
Beryllium	37	4.58E+00	3.06E-01	190.98	1.50E-03	2.86E-01	2.01E-03	2.00E-03	1
Cadmium	0.185	2.29E-02	1.53E-03	0.95	0.15	1.43E-01	1.01E-03	1.00E-03	1
Chromium	9200	1.14E+03	7.60E+01	47487.76	4.50E-03	2.14E+02	1.50E+00	1.50E+00	1
Cobalt	1.2	1.49E-01	9.91E-03	6.19	7.00E-03	4.34E-02	3.04E-04	3.00E-04	1
Copper	4.4	5.45E-01	3.63E-02	22.71	0.25	5.68E+00	3.99E-02	4.00E-02	1
Iron	19500	2.42E+03	1.61E+02	100653.4	0.001	1.01E+02	7.07E-01	7.00E-01	1
Lead	0.015	1.86E-03	1.24E-04	0.08	9.00E-03	6.97E-04	4.89E-06	NA	NA
Manganese	77	9.54E+00	6.36E-01	397.45	0.05	1.99E+01	1.39E-01	1.40E-01	1
Mercury	0.042	5.20E-03	3.47E-04	0.22	0.2	4.34E-02	3.04E-04	3.00E-04	1
Molybdenum	2.3	2.85E-01	1.90E-02	11.87	0.06	7.12E-01	5.00E-03	5.00E-03	1
Nickel	9.25	1.15E+00	7.64E-02	47.75	0.06	2.86E+00	2.01E-02	2.00E-02	1
Selenium	5.5	6.81E-01	4.54E-02	28.39	0.025	7.10E-01	4.98E-03	5.00E-03	1
Silver	1.4	1.73E-01	1.16E-02	7.23	0.1	7.23E-01	5.07E-03	5.00E-03	1
Thallium	0.69	8.55E-02	5.70E-03	3.56	4.00E-04	1.42E-03	1.00E-05	1.00E-05	1
Vanadium	46	5.70E+00	3.80E-01	237.44	3.00E-03	7.12E-01	5.00E-03	5.00E-03	1
Zinc	9.2	1.14E+00	7.60E-02	47.49	0.9	4.27E+01	3.00E-01	3.00E-01	1

ND = Not Detected

Shaded results indicate that screening level is based on carcinogenic risk. Therefore,

NA = Not Available

BAFs are for wet-weight plants (ORNL 2018)

Plant concentration (mg/kg) =

Soil Concentration * BAF (wet weight)

Consumption of Homegrown Meat Products

To assess exposure through homegrown meat products based on consumption of beef or sheep by a resident, tissue concentrations corresponding to the livestock AWQC were developed. The tissue concentration is calculated as part of the water quality assessment for livestock and was used as the exposure concentration for human receptors (Table 6-7). In all cases, the higher tissue concentration was found in cattle and therefore, cattle tissue concentrations are used for evaluation.

All hazards were below 1.0, except for Tl. In addition, the As risk associated with the estimated tissue concentration was 3.3E-2, higher than the acceptable risk of 1E-6 (U.S. EPA 2002). These AWQC values were adjusted downward in the combined AWQC to be equivalent to a hazard index of 1.0 and risk of 1E-6. For Tl, the AWQC of 9 μ g/L was divided by 25.1, resulting in an adjusted AWQC for ingestion of meat products of 0.36 μ g/L. For As, the AWQC of 7.2 μ g/L was divided by 32000, resulting in an adjusted AWQC for ingestion of meat products of 0.00048 μ g/L. All other metals were associated with a hazard index well below 1.0, and AWQC for this pathway were adjusted upward to calculate an AWQC equivalent to 1.0 but dividing the livestock-based AWQC by the calculated hazard index.

Table 6-7. AWQC for ingestion of homegrown meat products, including the adjustment to a hazard index of 1.0 and risk of 1E-6.

	Ma:	ximum Predicted Sc	il Concentrations fro					
	Water Concentration (mg/L) Cattle	Tissue concentration from food and soil (Cattle) mg/kg	Tissue Concentration from Water Uptake (Cattle) (mg/kg)	Total Concentration in Cattle (mg/kg)	Human Dose from Ingestion of Meat	Toxicity Value	Hazard Quotient	Adjusted AWQC (mg/L)
Aluminum	190	5.26E-06	5.70E-02	5.70E-02	1.97E-04	1.00E+00	1.97E-04	8.64E+05
Antimony	1.8	5.11E-08	3.60E-04	3.60E-04	1.24E-06	4.00E-04	3.11E-03	5.79E+02
Arsenic	7.2	2.92E-07	2.88E-03	2.88E-03	9.94E-06	3.00E-04	3.31E-02	2.17E+02
Arsenic	7.2	2.92E-07	2.88E-03	2.88E-03	9.94E-06	1.50E+00	1.49E-05	4.83E-01
Barium	75	2.91E-07	2.25E-03	2.25E-03	7.77E-06	2.00E-01	3.88E-05	1.93E+06
Beryllium	2.8	5.26E-08	5.60E-04	5.60E-04	1.93E-06	2.00E-03	9.67E-04	2.90E+03
Cadmium	2.3	5.84E-08	2.53E-04	2.53E-04	8.74E-07	1.00E-03	8.74E-04	2.63E+03
Chromium	24	2.46E-06	2.64E-02	2.64E-02	9.11E-05	1.50E+00	6.08E-05	3.95E+05
Cobalt	6	2.31E-06	2.40E-02	2.40E-02	8.29E-05	3.00E-04	2.76E-01	2.17E+01
Copper	9.8	3.78E-06	1.96E-02	1.96E-02	6.77E-05	4.00E-02	1.69E-03	5.79E+03
Iron	120	4.43E-05	4.80E-01	4.80E-01	1.66E-03	7.00E-01	2.37E-03	5.07E+04
Lead	23	1.89E-07	1.84E-03	1.84E-03	6.35E-06	NA	NA	15
Manganese	490	6.07E-06	3.92E-02	3.92E-02	1.35E-04	1.40E-01	9.67E-04	5.07E+05
Mercury	0.45	7.19E-06	2.25E-02	2.25E-02	7.77E-05	3.00E-04	2.59E-01	1.74E+00
Molybdenum	1.2	2.23E-07	1.44E-03	1.44E-03	4.97E-06	5.00E-03	9.94E-04	1.21E+03
Nickel	24	3.07E-06	2.88E-02	2.88E-02	9.94E-05	2.00E-02	4.97E-03	4.83E+03
Selenium	1.2	3.52E-07	3.60E-03	3.60E-03	1.24E-05	5.00E-03	2.49E-03	4.83E+02
Silver	1100	1.27E-04	6.60E-01	6.60E-01	2.28E-03	5.00E-03	4.56E-01	2.41E+03
Thallium	9	6.65E-06	7.20E-02	7.20E-02	2.49E-04	1.00E-05	2.49E+01	3.62E-01
Vanadium	12	5.56E-07	6.00E-03	6.00E-03	2.07E-05	5.00E-03	4.14E-03	2.90E+03
Zinc	120	8.62E-04	2.40E+00	2.40E+00	8.29E-03	3.00E-01	2.76E-02	4.34E+03

Grey shaded - arsenic (carcinogenic) calculation

Combined AWQC for Humans

Following the method described in Section 6.2, the inverse sum of fractions was used to calculate an AWQC that included water ingestion, ingestion of homegrown produce and ingestion for home grown meat products. Each pathway was considered to contribute equally to total exposure, although the AWQC for ingestion of meat products were adjusted to account for their relative hazards as described above. Overall, the water ingestion pathway was the dominant exposure pathway. The combined AWQC are presented in Table 6-8.

Two results are presented for As. The AWQC value associated with carcinogenic effect of As are lower than those based on noncarcinogenic hazard. Carcinogenic endpoints are assessed only for humans, so it is only the AWQC for humans that two calculations were performed for As.

Table 6-8. AWQC for human health.

		Risk-based AWQ	C from Human Exposure Pathways	
	Direct Ingestion AWQC (µg/L)	Ingestion of Plants - AWQC (µg/L)	Ingestion of Homegrown Meat Products - Adjusted AWQC (μg/L) ⁽³⁾	Combined AWQC (µg/L)
Aluminum	15000	4300000	863885706	15000
Antimony	6	370	579283	5.90
Arsenic (non-cancer)	5	1400	217240	4.49
Arsenic (cancer) (1)	0.02	0.026	483	0.0113
Barium	3000	370000	1930967132	2980
Beryllium	30	37000	2896554	30
Cadmium	8	185	2632870	7.21
Chromium	22500	9200000	394984825	22400
Cobalt	5	1200	21724	4.48
Copper	600	4400	5792534	528
Iron	10500	19500000	50689764	10500
Lead	15	15	15	5.0
Manganese	2100	77000	506866017	2040
Mercury	5	42	1738	4.06
Molybdenum	75	2300	1206824	72.6
Nickel	300	9250	4827528	291
Selenium	75	5500	482757	74
Silver	75	1400	2413556	71.2
Thallium ⁽²⁾	0.15	690	362	0.15
Vanadium	75	46000	2896557	74.9
Zinc	4500	9200	4343678	3020

Shaded results indicate that screening level is based on carcinogenic risk.

⁽¹⁾ AWQC for ingestion of homegrown meat products for arsenic (carcinogenic) was adjusted downward by a factor of 32000 to account for risk above 1E-6.

⁽²⁾ AWQC for ingestion of homegrown meat products for thallium was adjusted downward by a factor of 25.1 to account for hazard index above 1

⁽³⁾ All AWQC for livestock ingestion adjusted upwards except for arsenic and thallium

6.3. Uncertainties

The human health and agricultural AWQC were based on the domestic and agricultural water uses for the Navajo Nation, and upper-bound exposure parameters were chosen. This was a necessary assumption to address the uncertainty in the range of exposures. This assumption is associated with uncertainty that is intended to be protective of all ages.

There is uncertainty in the estimate of soil concentrations from the use of water for irrigation. Deeper tillage may act to decrease concentrations, as deposited metals would be dispersed through a larger soil column. Further, decreases in metals through runoff, plant uptake, addition of soil amendments, or other means were not factored into the estimates. In addition, the water usage may be over- or underestimated and could be better assessed if surface water withdrawal rates are known, as well as the acreage that is irrigated by surface water drawn from the river.

The bioaccumulation factors from Baes et al. 1984 are a general factor that is not specific to the types of crops that may be grown in New Mexico. Different types of crops will uptake metals at different rates, so it is possible that using one value as a surrogate is an overestimate of potential exposures through homegrown produce. Further, the availability of metals from soil is affected by pH. There was no assessment of soil pH for the development of AWQC.

The benchmark values used to assess potential adverse impacts to plants and uptake factors used to estimate uptake of metals to crops are not specific to any crop, introducing an uncertainty. Similarly, uptake factors for beef for each metal were used to assess metals uptake by sheep in the absence of accumulation factors specific to sheep. This may over- or underestimate concentrations of metals in edible tissues of sheep.

The toxicity reference values were based on tolerable levels in feed for cattle and sheep. The body weight and feed intake rates used to assess exposures are based on generally accepted values for sheep and cattle. However, these may not bound exposure parameters for cattle or sheep in New Mexico due to different ranching practices, or temperature and climate conditions, as well as breed size and water/feed intake rates.

Ingestion rates for human consumption of homegrown produce and meat are also associated with uncertainty. U.S. EPA intake rates based on homegrown meat and produce were used, and consumption may be less than this if other sources of food items are more commonly used. Conversely, if all food consumed is homegrown, then these intake rates may not fully capture Navajo exposures and they may lead to an underestimate of risk.

It should be noted that this analysis estimates the incremental contribution of surface water to total exposures and excludes any contribution from existing or background concentrations to crop, livestock, or human exposure.

6.4. Summary and Recommendations

Based on the evaluation of risks associated with direct human exposure to SJR water and sediment, agricultural exposure pathways, and potential accumulation of metals in soil, there are no immediate risks to human health or agricultural receptors. However, there are some exceedances of risk-based screening levels, discussed below.

6.4.1. Agricultural AWQC

The agricultural AWQC presented are based on toxicity to plants, and toxicity to livestock through ingestion of water and feed, pasture and soil irrigated with surface water. For all metals except iron, the AWQC developed here for livestock are higher than those from NAS & NAE 1972 for plants. However, the AWQC based solely on metals accumulation in soil (Table 7-1) are higher than the AWQC for livestock. AWQC for sheep are lower than those for cattle, which is expected given the larger intake of water by sheep relative to body weight. Most of the toxicity reference values for the metals are based on toxicity to cattle, which may not be an accurate assessment of their toxicity in sheep.

6.4.2. Human Health AWQC

Long-term exposure to the most sensitive receptor (child) was used to develop AWQC for domestic water use. These values were the lowest of all human exposure pathways evaluated, and much lower than the AWQC associated with food products. The AWQC associated with As evaluated as a carcinogen through water ingestion and consumption of homegrown produce and meat products was the lowest AWQC calculated.

6.4.3. Recommendations

Soil type and pH could be determined with greater accuracy, as both will affect bioavailability of metals to plants. The use of a soil density of 1.6 g/cm³ corresponding to sandy loam provides a reasonable estimate of soil density. However, the determination of soil type would provide a more accurate assessment of potential metal content, and determination of pH could provide an indication of how available the metals are to uptake by plants. It is also recommended that estimation of metal accumulation in soil be further evaluated. While Table 6-1 presents a maximum accumulation of metals in soil in one year of irrigation, prorating this amount over a period of years and consideration of background soil concentrations may result in a much lower AWQC.

Site-specific uptake factors for homegrown plants could be developed by growing species of interest in soil from a representative area. Soil concentration, vegetative plant parts, and non-vegetative plant parts (such as melons, squash, and corn) could be analyzed to determine a more specific uptake factor.

Food preferences and sources could be surveyed in the community to determine which foodstuffs constitute the majority of the community's diet. Specific dietary patterns of the affected communities could be used to better estimate exposures to homegrown food products. This information can be challenging to collect from individuals but can sometimes be collected from representative community leaders.

7. Summary and Conclusions

Most states and tribes include general agricultural uses, livestock watering, or irrigation as designated uses. Most states and tribes that have numeric standards for agricultural designated uses cite or use U.S. U.S. EPA's 1972 Water Quality Criteria, however, calculations were not provided in U.S. EPA's 1972 criteria for livestock watering or crop irrigation and in most cases, clear rationale for state and tribal numeric standards are lacking. A risk-based approach was used to develop metal water quality criteria to protect human health, which included sources, transport mechanisms, points of exposure, exposure pathways, and intermediate receptors of importance to the Navajo Nation as well as other state and tribal agencies. The risk-based criteria are compared with criteria for crops and livestock recommended in U.S. EPA's 1972 guidance, aquatic life criteria, and drinking water criteria for metals of interest to provide context. Section 3 provides a summary of the information that was relied upon in developing the 1972 criteria. Table 7-1 presents a comparison of the calculated risk-based water quality criteria and the 1972 U.S. EPA criteria for crops and livestock where criteria were identified in NAS & NAE 1972. Table 7-2 compares regulatorily established agricultural water quality standards for New Mexico, Utah, and Arizona with the calculated criteria in this report. In general, calculated criteria are higher than the 1972 criteria or those standards used for example by New Mexico, Arizona, and Utah. The state water quality standards are based on dissolved rather than total recoverable concentrations in water for the metals for which states have promulgated standards. Note, there are several metals for which state standards are not available. These are shown as blank cells in the tables.

The risk-based criteria take into account toxicity only and not overall water salinity, hardness or metal solubility, which leads to higher calculated levels. For use of water for irrigation or as a livestock water supply, salinity and total suspended solids would limit the amount of a metal that could be present before the water is unusable. It is recommended that the calculated risk-based values be adjusted for the recommended limit of total dissolved salts in water for livestock of less than 5000 mg/L (CSU 1999). The values are likely to be lower than the calculated criteria presented in Tables 7-1 and 7-2 and will be more relevant for use.

Direct ingestion of water presents the most important pathway and drives the risk-based criteria calculated in this report. Homegrown food products contribute some of the exposure and risk, depending on the bioaccumulation of the metal. Based on this result, it may be appropriate to compare the risk-based values in this report with drinking water standards for metals of concern. Using New Mexico's drinking water standards as an example, in general, the calculated risk-based values are lower. There are two main reasons for the difference:

- (1) The calculated risk-based values are based on child exposure parameters, which incorporate a higher water ingestion rate and lower body weight than those of adults. Adult exposure parameters are typically used for setting regulatory levels, with the exception of Pb.
- (2) The inclusion of homegrown produce and meat products in the calculation of human-health based criteria. These pathways are not included in setting water quality standards for state and national programs.

Note also that the New Mexico state standards are based on dissolved concentrations of metals in water, rather than total metals. The use of a total metal concentration is a more conservative measure of exposure as it does not assume filtration of water prior to use.

The AWQC developed in this report may serve as benchmarks or triggers for management of water resources in the Navajo Nation and beyond, notwithstanding several uncertainties. The human health and agricultural water quality criteria were based on domestic and agricultural water uses for the Navajo Nation, and upper-bound exposure parameters were chosen. This was a necessary assumption to address the uncertainty in the range of exposures. This assumption is associated with uncertainty that is intended to be protective of all ages. There is also uncertainty in the estimate of soil concentrations from the use of water for irrigation. Deeper tillage may act to decrease concentrations, as deposited metals would be dispersed through a larger soil column. Further, decreases in metals through runoff, plant uptake, addition of soil amendments, or other means were not factored into the estimates. In addition, the water usage may be over- or underestimated and could be better assessed if surface water withdrawal rates are known, as well as the acreage that is irrigated by surface water drawn from the river.

The toxicity reference values were based on tolerable levels in feed for cattle and sheep. The body weight and feed intake rates used to assess exposures are based on generally accepted values for sheep and cattle. However, these may not bound exposure parameters for cattle or sheep in New Mexico due to different ranching practices, or temperature and climate conditions, as well as breed size and water/feed intake rates.

Ingestion rates for human consumption of homegrown produce and meat are also associated with uncertainty. U.S. EPA intake rates based on homegrown meat and produce were used, and consumption may be less than this if other sources of food items are more commonly used. Conversely, if all food consumed is homegrown, then these intake rates may not fully capture Navajo exposures and they may lead to an underestimate of risk.

It should be noted that the analysis presented in this report estimates the incremental contribution of surface water to total exposures and excludes any contribution from existing or background concentrations to crop, livestock, or human exposure.

Table 7-1. AWQC Comparisons

	Risk-based A	AWQC from Huma	n, Crop, and Lives	itock Exposure Pa	ithways		Water Quality Standards - Drinking Water				
Metal	Direct Ingestion - Human - AWQC (µg/L- total)	Combined Human Health-based AWQC (µg/L- total) (2)	AWQC - Toxicity to Plants (µg/L- total)	AWQC - Toxicity to Cattle (µg/L- total)	AWQC - Toxicity to Sheep (μg/L- total)	New Mexico - Irrigation (μg/L, dissolved)	New Mexico - Livestock (μg/L, dissolved)	Utah - Agricultural Standards (µg/L - dissolved)	Arizona - Irrigation (μg/L)	Arizona - Livestock (μg/L)	New Mexico Drinking Water Standards (dissolved, μg/L)
Aluminum	15,000	14,994.5	5,000	190,000	170,000	5,000					None
Antimony	6	5.9	500	1,800	1,600						6
Arsenic (nonc)	4.5	4.5	100	7,200	4,500	100	200	100	2,000 (total)	200 (total)	10
Arsenic (carc) (1)	0.02	0.01	100	7,200	4,5000						
Barium	3,000	2,975.9	50,000	75,000	65,000						2,000
Beryllium	30	30.0	100	2,800	2,500						4
Cadmium	7.5	7.2	10	2,300	1,500	10	50	10	50 (hardness dependent)	50 (hardness dependent)	5
Chromium	22,500	22,443.83	100	24,000	15,000	100	1,000	100	1,000 (hardness dependent)	1,000 (hardness dependent)	100
Cobalt	4.5	4.5	1,000	6,000	3,800	50					50
Copper	600	528.0	200	9,800	2,200	200	500	200	5,000 (total)	500 (total)	1,300
Iron	10,500	10,492.2	5,000	120,000	75,000						
Lead	15	5.0	5,000	23,000	15,000	5,000	100	100	10,000 (total)	100 (total)	15
Manganese	2,100	2,044.2	200	490,000	300,000				10,000		
Mercury	4.5	4.1	30	450	300		10			10 (total)	2
Molybdenum	75	72.6	10	1,200	750	1,000					None
Nickel	300	290.6	200	24,000	15,000						700
Selenium	75	74.0	20	1,200	750	130 (3)	50	50	20 (total)	50 (total)	50
Silver	75	71.2	56,000	1,100,000	1,000,000						
Thallium (2)	0.15	0.15	100	9000	8,000						2

Table 7-1 (continued).

	Risk-based AWQC from Human, Crop, and Livestock Exposure Pathways State Water Quality Standards - Agricultural											
Metal	Direct Ingestion - Human - AWQC (µg/L- total)	Combined Human Health-based AWQC (µg/L- total) (2)	AWQC - Toxicity to Plants (µg/L- total)	AWQC - Toxicity to Cattle (µg/L- total)	AWQC - Toxicity to Sheep (μg/L- total)	New Mexico - Irrigation (µg/L, dissolved)	New Mexico - Livestock (µg/L, dissolved)	Utah - Agricultural Standards (µg/L - dissolved)	Arizona - Irrigation (μg/L)	Arizona - Livestock (μg/L)	New Mexico Drinking Water Standards (dissolved, μg/L)	
Vanadium	75	74.9	100	12000	7500	100	100				None	
Zinc	4500	3019.8	2,000	120000	45000	25,000	25,000		10000 (total)	25000 (total)	10500	

⁽¹⁾ Carcinogenic effects – evaluated for humans only

⁽²⁾ Includes water ingestion, consumption of homegrown produce, and consumption of homegrown meat products

⁽³⁾ In presence of SO _{+A20} <500 mg/L

Table 7-2. Summary of risk-based water quality standards (mg/L) for crops, livestock, and human health

Metal	Crops (this study)	U.S. EPA 1972 Criteria crops	Cattle (this study)	Sheep (this study)	U.S. EPA 1972 Criteria livestock	Human health — water ingestion	Human health – homegrown produce	Human health – homegrown meat
Aluminum	5		190	170		15	43000	8.64E+05
Antimony	0.5		1.8	1.6		0.006	0.37	5.79E+02
Arsenic	0.1	0.10	7.2	4.5	0.2	0.00002/0.0051	0.000026/1.41	4.83E-01
Barium	50		75	6.5		3	370	1.93E+06
Beryllium	0.1		2.8	2.5		0.03	37	2.90E+03
Cadmium	0.01	0.01	2.3	1.5	50	0.008	0.185	2.63E+03
Chromium	0.1		24	15		23	9200	3.95E+05
Cobalt	1		6	3.8		0.005	1.2	2.17E+01
Copper	0.2	0.2	9.8	2.2	0.5	1	4.4	5.79E+03
Iron	5	5	120	75	2.0	11	19500	5.07E+04
Lead	5	5	23	150	0.05	0.015	0.015	15
Manganese	0.2		490	300			77	5.07E+05
Mercury	0.03		0.45	0.3		0.005	0.042	1.74E+00
Molybdenum	0.01		1.2	0.75		0.075	2.3	1.21E+03
Nickel	0.2	0.2	24	15		0.3	9.25	4.83E+03
Selenium	0.02		1.2	0.75		0.075	5.5	4.83E+02
Silver	56		1100	1000		0.075	1.4	2.41E+03
Thallium	0.1		9	8		0.00015	0.69	3.62E-01
Vanadium	0.1		12	7.5		0.075	46	2.90E+03
Zinc	2	2.0	120	45	25.0	4.5	9.2	4.34E+03

8. Literature Cited

- Agency for Toxic Substances and Disease Registry (ATSDR). (n.d). Toxicological Profiles. Retrieved from https://www.atsdr.cdc.gov/toxprofiledocs/index.html
- Aiello, G. (1955). Pathology of antimony. Folia Medica (Naples, Italy), 30, 100.
- Alia, N., et al. (2015). Toxicity and bioaccumulation of heavy metals in spinach (*Spinacia oleracea*) grown in a controlled environment. *International Journal of Environmental Research and Public Health, 12*, 7400-7416. doi:10.3390/ijerph120707400
- Ambrose, A. M., Larson, D. S., Borzelleca, J. R., & Hennigar, Jr., G.R. (1976). Long-term toxicologic assessment of nickel in rats and dogs. *Journal of Food Science and Technology*, 13, 181-187.
- American Society for Testing and Materials (ASTM). (2014). *Standard Guide for Conducting Terrestrial Plant Toxicity Tests, Annual Book of Standards*. (E1963-09). West Conshocken, PA.
- Ammerman, C. B. (1969). SYMPOSIUM: Trace minerals; recent developments in cobalt and copper in ruminant nutrition: A review. *Journal of Dairy Science*, *53*(8), 1097-1107.
- Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: An overview. *International Journal of Application or Innovation in Engineering & Management*, *5*(3), 56-66.
- Ayers, R. S., & Westcot, D. W. (1976). *Water Quality for Agriculture*. (FAO Irrigation and Drainage Paper, 29). Rome, Italy: Food and Agriculture Organization of the United Nations.
- Ayers, R. S., & Westcot, D. W. (1985). *Water Quality for Agriculture*. (FAO Irrigation and Drainage Paper, 29 Rev. 1). Rome, Italy: Food and Agriculture Organization of the United Nations.
- Baes, C. F., Sharp, R. D., Sjoreen, A. L., & Shor, R. W. (1984). A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. (ORNL-5786). Oak Ridge National Laboratory.
- Bakkali, K., Martos, N. R., Souhail, B., & Ballesteros, E. (2012). Determination of heavy metal content in vegetables and oils from Spain and Morocco by inductively coupled plasma mass spectrometry. *Analytical Letters*, 45, 907-919.
- Balestrasse, K. B., Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2003). Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. *Functional Plant Biology*, *30*, 57-64.
- Bampidis, V. A., Nistor, E., & Nitas, D. (2013). Arsenic, cadmium, lead and mercury as undesirable substances in animal feeds. *Animal Science and Biotechnologies*, 46(1), 17-22.
- Belyaeva, A. P. (1967). The effect of antimony on reproduction. *Gigiena Truda I Professional'nye Zabolevaniia, 11,* 32.
- Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. *Brazilian Journal of Plant Physiology*, 17(1), 21-34.

- Bhalerao, S. A., Sharma, A. S., & Poojari, A. C. (2015). Toxicity of nickel in plants. *International Journal of Pure & Applied Bioscience*, 3(2), 345-355.
- Bishnoi, N. R., Sheoran, I. S., & Singh, R. (1993). Influence of cadmium and nickel on photosynthesis and water relations in wheat leaves of different insertion level. *Photosynthetica*, 28, 473–479.
- Blaylock, M. J., & Huang, J. W. (2000). Phytoextraction of metals. In I. Raskin & B. D. Ensle (Eds.),

 Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment (pp. 53–70.). New York, NY:

 Wiley, New York.
- Blood, D. C., Radostits, O. M., Arundel, J. H., & Gay, C. C. (1992). *Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses* (Seventh ed.). London, UK: Bailli ere Tindall Ltd.
- Bradley, C. H. (1993). Copper poisoning in a dairy herd fed a mineral supplement. *Canadian Veterinary Journal,* 34, 287-292.
- Buchman, M. F. (2008). *NOAA Screening Quick Reference Tables*. (NOAA OR&R Report 08-1). Seattle, WA: National Oceanic and Atmospheric Administration, Office of Response and Restoration Division.
- Bunzl, K., Trautmannsheimer, M., Sadaf, S., Schramel, P., & Reifenhauser, W. (2001). Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag-contaminated soils. *Journal of Environmental Quality*, 30, 934–939.
- Centers for Disease Control and Prevention (CDC). (1991). Cited in the following EPA IRIS link for lead. Retrieved from https://cfpub.epa.gov/ncea/iris/iris documents/documents/subst/0277 summary.pdf#nameddest=rfd
- Chapman Jr., H. L., & Kidder, R. W. (1964). Copper and cobalt for beef cattle. Florida Agr. Exp. Sta., Bull., 674.
- Christensen, T. H. (1984). Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH, and calcium. *Water, Air & Soil Pollution, 21*, 105–114.
- Colorado Department of Public Health and Environment. (2018). *Regulation No. 31 The Basic Standards and Methodologies for Surface Water*. (5 CCR 1002-31). Denver, CO: Colorado Department of Public Health and Environmental, Water Quality Control Commission.
- Connolly, E. L., & Guerinot, M. L. (2002). Iron stress in plants. Genome Biology, 3(8), 1-4.
- Coup, M. R., & Campbell, A. G. (1964). The effect of excessive iron intake upon the health and production of dairy cows. *New Zealand Journal of Agricultural Research*, 7(4), 624-638. doi:10.1080/00288233.1964.10416390
- Croteau, M.-N., Luoma, S. N., & Stewart, A. R. (2005). Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. *Limnology and Oceanography, 50,* 1511-1519.

- Dahal, B. M., Fuerhacker, M., Mentler, A., Karki, K. B., Shrestha, R. R., & Blum, W. E. H. (2008). Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. *Environmental Pollution*, 155(157-163).
- Das, P., Samantaray, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. *Environmental Pollution*, *98*, 29-36.
- De Filippis, L. F., & Ziegler, H. (1993). Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. *Journal of Plant Physiology*, 142, 167–172.
- de Souza Silva, M. L., Vitti, G. C., & Trevizam, A. R. (2014). Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil. *Revista Ceres, Viçosa, 61*(2), 248-254.
- Derrick, J. (2006). Managing for Cadmium Minimization in Australian Livestock. SAFEMEAT, Meat & Livestock Australia.
- Dietz, D. D., Elwell, M. R., Davis, W. E., & Meirhenry, E. F. (1992). Subchronic toxicity of barium Chloride dihydrate administered to rats and mice in the drinking water. *Fundamental and Applied Toxicology, 19*(4), 527-537. doi:10.1016/0272-0590(92)90091-U
- Ebbs, S., Talbott, J., & Sankaran, R. (2006). Cultivation of garden vegetables in Peoria Pool sediments from the Illinois River: A case study in trace element accumulation and dietary exposures. *Environment International*, 32, 766–774.
- Economou-Eliopoulos, M., Megremi, I., & Vasilatos, C. (2011). Factors controlling the heterogeneous distribution of Cr(VI) in soil, plants and groundwater: evidence from the Assopos basin, Greece. *Chemie der Erde:*Geochemistry, 71(1), 39–52. doi:10.1016/j.chemer.2011.01.001
- Efroymson, R. A., Will, M. E., Suter III, G. W., & Wooten, A. C. (1997). *Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision*. (ES/ER/TM-85/R3). Washington, DC: U.S. Department of Energy, Office of Environmental Management.
- Ernst, W. H. O., Verkleij, J. A. C., & Schat, H. (1990). Evolutionary biology of metal resistance in Silene vulgaris. Evolutionary Trends in Plants, 4, 45–51.
- European Commission (EC). (2003). Opinion of the Scientific Committee for Animal Nutrition on the Use of Zinc in Feedingstuffs. European Commission Health and Consumer Protection Directorate General.
- Federal Water Pollution Control Administration (FWPCA). (1968). Water Quality Criteria: Report of the National Technical Advisory Committee to the Secretary of the Interior. Washington, DC: U.S. Department of the Interior, Federal Water Pollution Control Administration.
- Fipps, G. (2003). Irrigation Water Quality Standards and Salinity Management Strategies. (Agricultural Communications, Texas Cooperative Extension B-1667). College Station, TX: Texas A&M, Department of Agricultural Engineering.
- Fodor, A., Szabo-Nagy, A., & Erdei, L. (1995). The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. *Journal of Plant Physiology*, 14, 787–792.

- Ford, K. L., & Beyer, W. N. (2014). Soil criteria to protect terrestrial wildlife and open-range livestock from metal toxicity at mining sites. *Environmental Monitoring and Assessment, 186*, 1899–1905.
- Foy, C. D., Chaney, R. L., & White, M. C. (1978). The physiology of metal toxicity in plants. *Annual Review of Plant Biology*, 29, 511-566.
- Freeland-Graves, J. H., Bales, C. W., & Behmardi, F. (1987). Manganese requirements of humans. In E. Kies (Ed.), Nutritional Bioavailability of Manganese (pp. 90-104). Washington, DC: American Chemical Society.
- Gaul, L. E., & Staud, A. H. (1935). Clinical spectroscopy. Seventy cases of generalized argyrosis following organic and colloidal silver medication. *The Journal of the American Medical Association*, 104, 1387-1390.
- Ghani, A. (2010). Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea maysL.). *Iranian Journal of Toxicology, 3*(3), 325-334.
- Ghosh, A. K., Bhatt, M. A., & Agrawal, H. P. (2012). Effect of long-term application of treated sewage water on heavy metal accumulation in vegetables grown in Northern India. *Environmental Monitoring and Assessment*, 184(2), 1025-1036. doi:10.1007/s10661-011-2018-6
- Gough, L. P., Shacklette, H. T., & Case, A. A. (1979). Element Concentrations Toxic to Plants, Animals, and Man: An Appraisal of the Toxicity Hazard to Plants, Animals, and Man from Natural and Manmade Element Concentrations of Environmental Concern. (Geological Survey Bulletin 1466). Washington, DC: U.S. Government Printing Office.
- Gray, J. S. (2002). Biomagnification in marine systems: the perspective of an ecologist. *Marine Pollution Bulletin,* 45(46-52).
- Guenzel, L., Mitchell, R., Sullivan, K., & Cyterski, M. (2018). Analysis of the biological data collected from the Animas and San Juan Rivers following the Gold King Mine release. (EPA/830/R-18/003). Washington, DC: U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds.
- Hejna, M., Gottardo, D., Baldi, A., Dell'Orto, V., Cheli, F., Zaninelli, M., & Rossi, L. (2018). Review: Nutritional ecology of heavy metals. *animal*, 12(10), 2156-2170. doi:10.1017/S175173111700355X
- Hernandez, L. E., Carpena-Ruiz, R., & Garate, A. (1996). Alterations in the mineral nutrition of pea seedlings exposed to cadmium. *Journal of Plant Nutrition*, 19, 1581–1159.
- Hicks, M. (2002). Establishing Surface Water Quality Criteria for the Protection of Agricultural Water Supplies. (Publication Number 00-10-073, Draft Discussion Paper). Washington State Department of Ecology, Water Quality Program.
- John, R., Ahmad, P., Gadgil, K., & Sharma, S. (2009). Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by *Brassica juncea L. International Journal of Plant Production, 3*(3), 65-76.
- Kabata-Pendias, A. (2001). Trace Elements in Soils and Plants (3rd ed.). Boca Raton, FL: CRC Press.

- Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. *Environmental Science and Pollution Research*, 22(18), 13772-13799. doi:10.1007/s11356-015-4881-0
- Kirkillis, C. G., Pasias, I. N., Miniadis-Meimaroglou, S., Thomaidis, N. S., & Zabetakis, I. (2012). Concentration levels of trace elements in carrots, onions and potatoes cultivated in Asopos region, Central Greece. *Analytical Letters*, 45(551-562).
- Kumar, P., & Pathak, S. (2018). Short-term response of plants grown under heavy metal toxicity: Chapter 5. In *Heavy Metals* (pp. 69-89).
- Li, Z., Li, L., & Chen, G. P. J. (2005). Bioavailability of Cd in a soil—rice system in China: soil type versus genotype effects. *Plant and Soil, 271*, 165–173.
- Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., . . . Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. *Science of the Total Environment, 463–464*, 530–540.
- Looper, M. L., & Waldner, D. N. (2002). *Water for Dairy Cattle*. (Guide D-107). New Mexico State University and Oklahoma State University.
- Mandal, P. (2017). An insight of environmental contamination of arsenic on animal health. *Emerging Contaminants*, *3*, 17-22.
- Marschner, H. (1986). Mineral Nutrition of Higher Plants. London, UK: Academic Press.
- Mathys, W. (1975). Enzymes of heavy metal-resistant and non-resistant populations of Silene cucubalus and their interactions with some heavy metals in vitro and in vivo. *Physiologia Plantarum*, 33(2), 161-165.
- McIntyre, J. K., & Beauchamp, D. A. (2007). Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington. *Science of the Total Environment*, *372*, 571-584.
- Mench M., Vangronsveld, J., Lepp, N., & Edwards, R. (1998). Physicochemical aspects and efficiency of trace element in immobilisation by soil amendments. In J. Vangronsfield & S. Cunningham (Eds.), *In-situ Inactivation and Phytorestoration of Metal Contaminated Soils* (pp. 151–182). Georgetown, TX: Springer-Verlag, Landes Company.
- Mirshekali, H., Hadi, H., Amirnia, R., & Khodaverdiloo, H. (2012). Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album). International Journal of Agriculture: Research and Review, 2(3), 247-254.
- Molas, J. (1997). Changes in morphological and anatomical structure of cabbage (*Brassica oleracea L.*) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. *Photosynthetica*, 34, 513–522.
- National Academy of Sciences & National Academy of Engineering (NAS & NAE). (1972). Water Quality Criteria 1972: A Report of the Committee on Water Quality Criteria. Washington, DC: National Academy of Sciences & National Academy of Engineering.

- National Research Council (NRC). (1989). Recommended Dietary Allowances, 10 Edition Food and Drug Nutrition Board. Washington, DC: National Academy Press.
- National Research Council (NRC). (2001). *Nutrient Requirements of Dairy Cattle, 7th Revision*. Washington, DC: National Academy Press.
- National Research Council (NRC). (2005). *Mineral Tolerances in Animals* (2nd Revised ed.). Washington, DC: National Academies Press.
- National Resource Conservation Service (NRCS). (2003). *National Range and Pasture Handbook*. Washington, DC: U.S. Department of Agriculture Retrieved from https://www.nrcs.usda.gov/Internet/FSE DOCUMENTS/stelprdb1043055.pdf.
- National Toxicology Program (NTP). (1994). NTP Technical Report on the Toxicology and Carcinogenesis Studies of Barium Chloride Dyhadrate (CAS no. 10326-27-9) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies). (NTP TR 432, NIH pub. no. 94 -3163. NTIS pub PB94-214178). Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service.
- Navajo Nation Environmental Protection Agency (NNEPA). (2017). San Juan Fish Contamination Study: November 2017. Owings Mills, MD: Tetra Tech, Inc., Center for Ecological Sciences.
- New Mexico State University (NMSU). (2011). Low-Pressure Drip Irrigation for Small Plots and Urban Landscape. (Research Report 773).
- Oak Ridge National Laboratory (ORNL). (2018). Risk Assessment Information System (RAIS). RAIS Contaminated Media Risk Calculator. Retrieved from https://rais.ornl.gov/
- Oak Ridge National Laboratory (ORNL). (2019). Risk Assessment Information System (RAIS). RAIS Contaminated Media Risk Calculator. Retrieved from https://rais.ornl.gov/
- O'Brien, T. F. (1987). Organochlorine and Heavy Metal Contaminant Investigation San Juan River basin, New Mexico, 1984. Albuquerque, NM: U.S. Fish and Wildlife Services, Ecological Field Services Office.
- Olkowski, A. A. (2009). *Livestock Water Quality A Field Guide for Cattle, Horses, Poultry, and Swine*: Minister of Agriculture and Agri-Food Canada.
- Pendergrass, A., & Butcher, D. J. (2006). Uptake of lead and arsenic in food plants grown in contaminated soil from Barber Orchard, NC. *Microchemical Journal*, 83(1), 14-16. doi:10.1016/j.microc.2005.12.003
- Perera, P. A. C. T., Kodithuwakku, S. R., Sundarabarathy, T. V., & Edirisinghe, U. (2015). Bioaccumulation of Cadmium in freshwater fish: an environmental perspective. *Insight Ecology, 4*, 1-12.
- Pick, T. (2011). Assessing Water Quality for Human Consumption, Agriculture, and Aquatic Life Uses. (Environmental Technical Note No. MT-1 (Rev 2)). Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service.

- Radostits, O. M., Gay, C. C., Blood, D. C., & Hinchcliff, K. W. (2002). Doenças causadas por substâncias químicas inorgâncias e produtos químicos utilizados nas fazendas. In *Clínica Veterinária: Um Tratado de Doenças Dos Bovinos, Ovinos, Suínos, Caprinos e Equinos* (pp. 1417-1471). Rio de Janeiro, Brazil: Guanabara Koogan.
- Raisbeck, M. F., Riker, S. L., Tate, C. M., Jackson, R., Smith, M. A., Reddy, K. J., & Zygmont, J. R. (2007). Water Quality for Wyoming Livestock and Wildlife: A Review of the Literature Pertaining to Health Effects of Inorganic Contaminants. University of Wyoming Department of Veterinary Sciences and Department of Renewable Resources, Wyoming Department of Fish and Game, and Department of Environmental Quality.
- Raisbeck, M. F., Wise, B., Zygmont, J. R., Smith, M. A., & Tate, C. M. (2011). Water Quality for Wyoming Livestock and Wildlife. (Final Report). University of Wyoming Department of Veterinary Sciences and Department of Renewable Resources, Wyoming Game and Fish Department, and Wyoming Department of Environmental Quality.
- Reis, L. S., Pardo, P. E., Camargos, A. S., & Oba, E. (2010). Mineral element and heavy metal poisoning in animals. Journal of Medicine and Medical Sciences, 1(12), 560-579.
- Rucinska-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. *Acta Physiologiae Plantarum*, *38*, 257. doi:10.1007/s11738-016-2277-5
- Sagardoy, R., Morales, F., Lopez-Millan, A.-F., Abadıa, A., & Abadıa, J. (2009). Effects of zinc toxicity on sugar beet (*Beta vulgaris L.*) plants grown in hydroponics. *Plant Biology, 11*, 339-350.
- Samal, L., & Mishra, C. (2011). Significance of nickel in livestock health and production. *Journal of Agro and Veterinary and Medical Sciences*, 5(3), 349-361.
- Sample, B. E., Opresko, D. M., & Sutter, G. W., II. (1996). *Toxicological Benchmarks for Wildlife: 1996 Revision*. (ES/ER/TM-86/R3). Oak Ridge, TN: U.S. Department of Energy, Risk Assessment Program, Health Sciences Research Division.
- Schat, H., Vooijs, R., & Kuiper, E. (1996). Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of *Silene vulgaris*. *Evolution, 50,* 1888–1895.
- Schroeder, H. A., M., M., & P., N. A. (1970). Zirconium, niobium, antimony, vanadium and lead in rats: Life term studies. *Journal of Nutrition*, 100, 59-66.
- Seregin, I. V., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. *Fiziol Rast*, *53*, 285–308.
- Shah, F. U. R., Ahmad, N., Masood, K. R., Peralta-Videa, J. R., & ud Din Ahmad, F. (2010). Chapter 4: Heavy metal toxicity in plants. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), *Plant Adaptation and Phytoremediation*. Netherlands: Springer Science.
- Sharma, S. S., & Dietz, K.-J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. *Journal of Experimental Botany*, *57*(4), 711–726.

- Simpson, Z. R., & Lusk, J. D. (1999). *Environmental Contaminants in Aquatic Plants, Invertebrates, and FIshes of the San Juan River Mainstem, 1990-1996*. Albuquerque, NM: U.S. Fish and Wildlife Service, New Mexico Ecological Field Office.
- Smith, S. R. (1994). Effect of soil pH on availability to crops of metals in sewage sludge-treated soils. II. Cadmium uptake by crops and implications for human dietary intake. *Environmental Pollution, 86*, 5-13.
- Srek, P., M., Hejcman, M., & Kunzova, E. (2010). Multivariate analysis of relationship between potato (*Solanum tuberosum L.*) yield, amount of applied elements, their concentrations in tubers and uptake in a long-term fertilizer experiment. *Field Crops Research*, 118, 183–193.
- Standish, J. F., Ammerman, C. B., Simpson, C. F., Neal, F. C., & Palmer, A. Z. (1969). Influence of graded levels of dietary ferrous sulfate on performance and tissue mineral composition of steers. *Journal of Animal Science*, 29(3), 496-503. doi:10.2527/jas1969.293496x
- Stasinos, S., Nasopoulou, C., Tsikrika, C., & Zabetakis, I. (2014). The bioaccumulation and physiological effects of heavy metals in carrots, onions, and potatoes and dietary implications for Cr and Ni: A Review. *Journal of Food Science*, 79(5), R765.
- Tamakhina, A. Y., Dzakhmisheva, I. S., Beslaneev, E. V., & Gadieva, A. A. (2018). Bioaccumulation of heavy metals by medicinal plants of the Inula genus. *Journal of Pharmaceutical Sciences and Research*, 10(5), 1263-1266.
- Tarasenko, N. Y., Pronin, O. A., & Silayev, A. A. (1977). Barium compounds as industrial poisons (an experimental study). *J Hyg Epidemiol Microbiol Immunol*, *21*(4), 361-373.
- Terra, B. F., Araujo, F. G., Calza, C. F., Lopes, R. T., & Teixeira, T. P. (2008). Heavy metal in tissues of three fish species from different trophic levels in a tropical Brazilian river. *Water, Air, and Soil Pollution, 187*, 275-284.
- Tokalioglu, S., Kartal, S., & Gultekin, A. (2006). Investigation of heavy-metal uptake by vegetables growing in contaminated soils using the modified BCR sequential extraction method. *International Journal of Environmental Analytical Chemistry*, 86, 417–430.
- Tran, T. A., & Popova, L. P. (2013). Functions and toxicity of cadmium in plants: Recent advances and future prospects. *Turkish Journal of Botany, 37*, 1-13. doi:10.3906/bot-1112-16
- U.S. Department of Agriculture (USDA). (2003). *National Range and Pasture Handbook*. (Revision 1). Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service, Grazing Lands Technology Institute Retrieved from https://www.nrcs.usda.gov/Internet/FSE DOCUMENTS/stelprdb1043055.pdf.
- U.S. Department of Agriculture (USDA). (2012). Census of Agriculture, National Agricultural Statistics Service. San Juan County New Mexico. County Profile. Retrieved from www.agcensus.usda.gov
- U.S. Environmental Protection Agency (U.S. EPA). (1976). *Quality Criteria for Water*. (EPA 440-9-76-023). Washington, DC: U.S. Environmental Protection Agency.

- U.S. Environmental Protection Agency (U.S. EPA). (1989). Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part A). (Interim Final. EPA/540-1-89/002). Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response.
- U.S. Environmental Protection Agency (U.S. EPA). (1994). Water Quality Standards Handbook: Second Edition. (EPA 823-B-94-005a). Washington, DC: U.S. Environmental Protection Agency, Office of Water.
- U.S. Environmental Protection Agency (U.S. EPA). (2000a). *Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health (2000)*. (EPA-822-B-00-004). Washington, DC: U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology Retrieved from https://www.epa.gov/sites/production/files/2018-10/documents/methodology-wqc-protection-hh-2000.pdf
- U.S. Environmental Protection Agency (U.S. EPA). (2000b). *Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates, Second Edition*. (EPA/600/R-99/064). Duluth, MN and Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development, and Office of Science and Technology.
- U.S. Environmental Protection Agency (U.S. EPA). (2002). *National Recommended Water Quality Criteria*. (EPA-822-R-02-047). Washington, DC: U.S. Environmental Protection Agency, Office of Water and Office of Science and Technlogy
- U.S. Environmental Protection Agency (U.S. EPA). (2003). *Ecological Soil Screening Level for Iron*. (Interim Final, OSWER Directive 9285.7-69). Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.
- U.S. Environmental Protection Agency (U.S. EPA). (2003-2007). Ecological Soil Screening Levels for Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel, Selenium, Silver, Vanadium, and Zinc. (Various directives numbers). Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.
- U.S. Environmental Protection Agency (U.S. EPA). (2007). Framework for Metals Risk Assessment. (EPA/120/R-07/001). Washington, DC: U.S. Environmental Protection Agency, Office of the Science Advisor Risk Assessment Forum.
- U.S. Environmental Protection Agency (U.S. EPA). (2011). *Exposure Factors Handbook: 2011 Edition*. (EPA/600/R-090/052F). Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment.
- U.S. Environmental Protection Agency (U.S. EPA). (2015). 2015 EPA Updated Ambient Water Quality Criteria for the Protection of Human Health. Retrieved from https://www.epa.gov/wqc/2015-epa-updated-ambient-water-quality-criteria-protection-human-health
- U.S. Environmental Protection Agency (U.S. EPA). (2017). Documentation for EPA's Implementation of the Johnson and Ettinger Model to Evaluate Site-Specific Vapor Intrusion into Buildings Version 6.0. (Revised September 2017). Washington, DC: U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation.

- U.S. Environmental Protection Agency (U.S. EPA). (2018). U.S. EPA Regional Screening Levels, (RSLs). Retrieved from https://www.epa.gov/risk/regional-screening-levels-rsls
- U.S. Environmental Protection Agency (U.S. EPA). (Various Years). Integrated Risk Information System (IRIS). Retrieved from https://www.epa.gov/iris
- U.S. Geological Survey (USGS). (2019). Water usage, crop irrigation. San Juan county New Mexico. Retrieved from https://waterdata.usgs.gov/nm/nwis/water-use?format=html-table&rdb-compression=file&wu-area=County&wu-category=IC&wu-county-nms=San%2BJuan%2BCounty&wu-category-nms=Irrigation%252C%2BCrop
- Underwood, E. J. (1971). *Trace Elements in Human and Animal Nutrition* (3rd ed.). New York and London: Academic Press.
- van Driel, W., van Luit, B., Smilde, K. W., & Schuurmans, W. (1995). Heavy-metal uptake by crops from polluted river sediments covered by non-polluted topsoil. I. Effects of topsoil depth on metal contents. *Plant and Soil, 175*(1), 93-104.
- van Lune, P., & Zwart, K. B. (1997). Cadmium uptake by crops from the subsoil. Plant and Soil, 189(2), 231-237.
- Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. *Current Opinion in Plant Biology, 12*, 1-9.
- Vijayarengan, P., & Mahalakshmi, G. (2013). Zinc toxicity in tomato plants. World Applied Sciences Journal, 24(5), 649-653.
- Vincevica-Gaile, Z., Klavins, M., Rudovica, V., & Viksna, A. (2013). Research review trends of food analysis in Latvia: major and trace element content. *Environmental Geochemistry and Health*, *35*, 693–703.
- Weiss, W. P. (2008). Mineral tolerances of animals. In *Tri-State Dairy Nutrition Conference Proceedings, April 22 and 23, 2008* (pp. 59-64).
- Weiss, W. P. (2010). *Tolerances of Animals*. Columbus, OH: The Ohio State University, Department of Animal Sciences, Ohio Agricultural Research and Development Center Retrieved from https://articles.extension.org/pages/26132/mineral-tolerances-of-animals.
- Wentink, G. H., Spierenburg, T. J., de Graaf, G. J., & van Exsel, A. C. A. (1985). A case of chronic zinc poisoning in calves fed with zinc-contaminated roughage. *Veterinary Quarterly*, 7(2), 153-157.
- Wheeler, C. T., Hughes, L. T., Oldroyd, J., & Pulford, I. D. (2001). Effects of nickel on Frankia and its symbiosis with *Alnus glutinosa* (L.) Gaertn. *Plant and Soil, 231*, 81-90.
- World Health Organization (WHO). (1973). *Trace Elements in Human Nutrition: Manganese. Report of a WHO Expert Committee*. (Technical Report Service, 532). Geneva, Switzerland: World Health Organization.
- Yang, G., et al. (1989). Studies of safe maximal daily dietary Se-intake in a seleniferous area in China. Part II:

 Relation between Se-intake and the manifestation of clinical signs and certain biochemical alterations in blood and urine. *Journal of Trace Elements and Electrolytes in Health and Disease*, 3(3), 123-130.

A. Appendix: State and Tribal Water Quality Standards and San Juan River Data

Table A-1. Compilation of State Agricultural Water Quality Standards

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
1	MA	314 CMR 4.00: Massachuetts Surface Water Quality Standards	Class B waters shall be suitable for irrigation and other agricultural uses; and and C waters should be suitable for the irrigation of crops used for consumption after cooking;	Additional Minimum Standards Applicable to all Surface Waters for Metals. All surface waters shall be free from pollutants in concentrations or combinations that are toxic to humans, aquatic life or wildlife. For pollutants not otherwise listed in 314 CMR 4.00, follow the National Recommended Water Quality Standards: 2002, U.S. EPA 822-R-02-047, November 2002 published by U.S. EPA pursuant to Section 304(a) of the Federal Water Pollution Control Act.	No	No
1	NH	Part Env-Wq 1703 Water Quality Standards Env- Wq 1703.01	Have narrative that would apply - Water Use Classifications. (a) State surface waters shall be divided into class A and class B, pursuant to RSA 485-A:8, I, II and III. Each class shall identify the most sensitive use which it is intended to protect (includes irrigation as a use).	RSA 485-A:8, I, II and III: Class A waters shall be considered as being potentially acceptable for water supply uses after adequate treatment. Class B waters shall be considered as being acceptable for fishing, swimming and other recreational purposes and, after adequate treatment, for use as water supplies.	No	No
1	ME	Chapter 584 Surface Water Quality Standards for Toxic Pollutants	No	Chapter 584. Appendix A. Statewide standards for toxic pollutants with national water quality standards for Priority Pollutants and non-Priority Pollutants. Patterned after the U.S. EPA's National Recommended Water Quality Criteria of November 2002 and December 2003.	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
1	RI	State of Rhode Island Water Quality Standards	Indicates that Class A, B, B1, and C should be suitable for irrigation and other agricultural uses.	Per Table 1, none in such concentrations that would exceed the [EPA] Water Quality Standards and Guidelines as found in Appendix B. The ambient concentration of a pollutant in a water body shall not exceed the [EPA] Ambient Water Quality Standards and Guidelines, (Appendix B) for the protection of aquatic organisms from acute or chronic effects, unless the standards or guidelines are modified by the Director based on results of bioassay tests conducted in accordance with the terms and conditions provided in the RIDEM Site Specific Aquatic Life Water Quality Standards Development Policy.	No	No
1	СТ	Connecticut Water Quality Standards	Class AA, A, and B- designated for water supply for agriculture and other uses.	Appendix D provides aquatic life standards and human health ambient water quality standards for these water classes for various metals.	No	No
1	VT	Vermont Water Quality Standards, Environmental Protection Rule Chapter 29(a)	Class B waters - designated use of Irrigation of crops and other agricultural uses - suitable, without treatment, for irrigation of crops used for human consumption without cooking and suitable for other agricultural uses.	In rivers, streams, brooks, creeks, and riverine impoundments, the human health based toxic pollutant standards listed in Appendix C shall be applied at the median annual flow for toxic substances that are classified as known, probable, or possible human carcinogens or at the 7Q10 flow for toxic substances that are classified as threshold toxicants (not known or probable carcinogens). In all other waters, the human health based toxic pollutant standards listed in Appendix C shall apply at all times.	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
2	NY	§702.14 Procedures for deriving standards and guidance values for protection of aesthetic quality	(b) Protection of the best usage of fishing shall include standards and guidance values to prevent tainting of aquatic food, including but not limited to taste, odor, and discoloration. Such values are referred to as Aesthetic (Food Source) values and derived based on an evaluation of reported levels of the substance that affect the aesthetic quality of the fish flesh, aquatic life, wildlife, or livestock that are consumed by humans and that acquire such flavor, odor, or color because of habitation in, passage through, or ingestion of waters. This use is E(FS) for Aesthetic (Food Source).	Table 1 (cf. section 703.5) Water Quality Standards Surface Waters and Groundwater includes metals standards but no metal standards are specifically listed for E(FS)	No	No
2	NJ	N. J. A. C. 7:9B, Surface Water Quality Standards	7:9B-1.12 Designated uses: Pineland (PL) uses include cranberry bog water supply and other agricultural uses; FW2 uses include agricultural water supply	A table is provided under 7. Surface Water Quality Standards for Toxic Substances: Several metals standards for FW2 for aquatic life and human health ambient water quality standards	No	No
3	WV	Requirements Governing Water Quality Standards Rule - Title 47CRS2	Category D - Agriculture and wildlife uses (D1 - irrigation; D2 - livestock watering; and D3 - wildlife).	Appendix E, Table 1 includes standards for "all other uses" in addition to those for human health and aquatic life protection - only metal listed is As at 100 µg/L	No	No
3	DC	Water Quality Standards (21 DCMR Ch. 11)	No ag designated uses	Only for other uses	No	No
3	DE	Delaware Department of Natural Resources and Environmental control Surface Water Quality Standards	Agricultural Water Supply designated use.	Section 4.6.3.2.1: Waters of the State shall not exhibit acute toxicity to fish, aquatic life, and wildlife, except in special cases applying to regulatory mixing zones as provided in Section 6.4.6.3.2. Tables 1 and 2 provide aquatic life and human health standards	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
3	PA	Chapter 93. Water Quality Standards	LWS - Livestock water supply designated use, IRS - irrigation	Section 16.1 Water quality standards are the numeric concentrations, levels or surface water conditions that need to be maintained or attained to protect existing and designated uses. They are designed to protect the water uses listed in Chapter 93 (relating to water quality standards). The most sensitive of these protected uses are generally water supply, recreation and fish consumption, and aquatic life related. Therefore, standards designed to protect these uses will normally protect the other uses listed in Chapter 93.	No	No
3	MD	COMAR 26.08.02.04	Class I.B includes agricultural water supply - applies to all surface water use classes in MD.	Code of Maryland Regulations (COMAR) Section 26.08.02.03-2.A. Numerical toxic substance standards shall be applied: (1) In intermittent streams, at the end of the discharge pipe; and (2) In all other water bodies, at the edge of the mixing zones determined in accordance with Regulation .05C—E of this chapter.	No	No
3	VA	9 VAC 25-260 Virginia Water Quality Standards.	A. All state waters, including wetlands, are designated for the following uses: recreational uses, e.g., swimming and boating; the propagation and growth of a balanced, indigenous population of aquatic life, including game fish, which might reasonably be expected to inhabit them; wildlife; and the production of edible and marketable natural resources, e.g., fish and shellfish.	9VAC25-260-140. Standards for surface water - table of aquatic life and human health ambient water quality standards; includes standards for nickel and zinc that are applicable to all other surface waters (based on fish consumption) - 4,600 μg/L for nickel and 26,000 for zinc	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
4	TN	Rule 1200-4-303	(5) Irrigation and (6) Livestock Water and Wildlife: (c) Hardness or Mineral Compounds, (f) Toxic Substances, (g) Other Pollutants. 1200-4-305 Interpretation of Standards. (4) Water quality standards for fish and aquatic life and livestock watering and wildlife set forth shall generally be applied on the basis of the following stream flows: unregulated streams - stream flows equal to or exceeding the 7-day minimum, 10-year recurrence interval; regulated streams - all flows in excess of the minimum critical flow occurring once in ten years as determined by the division.	1200-4-303 Standards for Water Uses. (1) Domestic Water Supply. (j) Toxic Substances - The waters shall not contain toxic substances, whether alone or in combination with other substances, which will produce toxic conditions that materially affect the health and safety of man or animals or impair the safety of conventionally treated water supplies. Table provided for overall limits, including several metals.	No	No
4	AL	Alabama Department of Environmental Management, Water Division - Water Quality Program, Chapter 335-6-10, Water Quality Standards	335-6-1009 Specific Water Quality Standards. (6) Limited Warmwater Fishery (b) Best usage of waters (May through November): agricultural irrigation, livestock watering, industrial cooling and process water supplies, and any other usage, except fishing, bathing, recreational activities, including water- contact sports, or as a source of water supply for drinking or food-processing purposes. (c) Conditions related to best usage (May through November): 1. The waters will be suitable for agricultural irrigation, livestock watering, and industrial cooling waters.	335-6-1006 Minimum Conditions Applicable to All State Waters. (c) State waters shall be free from substances attributable to sewage, industrial wastes or other wastes in concentrations or combinations which are toxic or harmful to human, animal or aquatic life to the extent commensurate with the designated usage of such waters. Lists human health and aquatic life standards in Table 1.	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
4	FL	Florida Chapter 62-302: Surface Water Quality Standards	62-302.400 Classification of Surface Waters, Usage, Reclassification, Classified Waters. Class IV - Agricultural Water Supply designated use.	62-302.530 Table: Surface Water Quality Standards - contains both numeric and narrative surface water quality standards to be applied except within zones of mixing.	Yes for Class IV: As $\leq 50 \mu g/L$ (same as aq life standards); Be $\leq 100 \mu g/L$ in waters with a hardness in mg/L of CaCO3 of less than 250 and shall not exceed 500 $\mu g/L$ in harder waters; Cr (III) $\leq e^{(0.819[\ln H)+0.6848)} \mu g/L$ (same as human health standards); Cr (VI) $\leq 11 \mu g/L$ (same as human health standards); Cu $\leq 500 \mu g/L$; Fe $\leq 1.0 \text{mg/L}$ (same as human health standards); Pb $\leq 50 \mu g/L$; Hg $\leq 0.2 \mu g/L$; Ni $\leq 100 \mu g/L$; Zn $\leq 1000 \mu g/L$	No, some are the same as aquatic life or human health standards. Copper and lead are the same as the NAS & NAE (1972) values. Not all of the NAS & NAE 1972 criteria are listed in these standards.
4	GA	391-3-603 Water Use Classifications and Water Quality Standards.	(2) Water Quality Enhancement: (a) The purposes and intent of the State in establishing Water Quality Standards are to provide enhancement of water quality and prevention of pollution; to protect the public health or welfare in accordance with the public interest for drinking water supplies, conservation of fish, wildlife and other beneficial aquatic life, and agricultural, industrial, recreational, and other reasonable and necessary uses and to maintain and improve the biological integrity of the waters of the State.	(5) General Standards for All Waters - contains narrative standards and numeric standards for human health and aquatic life. All waters shall be free from toxic, corrosive, acidic and caustic substances discharged from municipalities, industries or other sources, such as nonpoint sources, in amounts, concentrations or combinations which are harmful to humans, animals or aquatic life. Metals standards are listed for these uses.	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
4	KY	401 KAR 10.031. Surface water standards	Section 4. Aquatic Life. (1) Warm water aquatic habitat. The following parameters and associated standards shall apply for the protection of productive warm water aquatic communities, fowl, animal wildlife, arboreous growth, agricultural, and industrial uses.	Table 1 provides warm water habitat metals standards for Ag, As, Cd, Cr3, Cr6, Cu, Fe, Pb, Hg, Ni, Se, Zn, but appears is based on toxicity to aquatic life	No	No
4	SC	R.61-68, Water Classifications & Standards	A. Purpose and Scope: It is also a goal [of the Department] to provide, where appropriate and desirable, for drinking water after conventional treatment, shellfish harvesting, and industrial and agricultural uses. 8. Trout Waters. The State recognizes three types of trout waters: Natural; Put, Grow, and Take; and Put and Take. Also suitable for primary and secondary contact recreation and as a source for drinking water supply after conventional treatment in accordance with the requirements of the Department. These waters are suitable also for industrial and agricultural uses. 10. Freshwaters (FW) for primary and secondary contact recreation and as a source for drinking water supply after conventional treatment in accordance with the requirements of the Department. They are suitable also for industrial and agricultural uses. Water Pollution Control Permits: R61-9 includes information on spray irrigation of sewage sludge.	Appendix: Water Quality Numeric Standards for the Protection of Aquatic Life and Human Health: includes metals standards but not specifically for agricultural uses.	No	No
4	MS	State of Mississippi Water Quality Standards for Intrastate, Interstate, and Coastal Waters (WPC-2)	No - not listed as a designated use	Table 2. Numeric Standards for All Waters (μg/l) - provides human health and aquatic life standards for metals and other chemicals	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
4	NC	Subchapter 2B - Surface Water and Wetland Standards, Section .0100 - Procedures for Assignment of Water Quality Standards	15A NCAC 02B .0211 Fresh Surface Water Quality Standards for Class C Waters. General. (1) Best Usage of Waters: aquatic life propagation and maintenance of biological integrity (including fishing and fish), wildlife, secondary recreation, agriculture and any other usage except for primary recreation or as a source of water supply for drinking, culinary or food processing purposes; (2) Conditions Related to Best Usage: the waters shall be suitable for aquatic life propagation and maintenance of biological integrity, wildlife, secondary recreation, and agriculture.	Toxic substances: numerical water quality standards (maximum permissible levels) for the protection of human health applicable to all fresh surface waters are in Rule .0208 of this Section. Numerical water quality standards (maximum permissible levels) to protect aquatic life applicable to all fresh surface waters are also provided.	No	No
5	IN	Indiana Article 2. Water Quality Standards	327 IAC 2-1-3 Surface water use designations; multiple uses. Sec 3a(4) All waters that are used for agricultural purposes must, as a minimum, meet the standards established in section 6(a) of this rule. Sec. 6. (a) is Minimum Surface Water Quality Standards	Table 6-1 Surface Water Quality Standards for Specific Substances are referenced in Sec. 6. (a). It includes human health and aquatic life standards for metals	No	No
5	ОН	State of Ohio Water Quality Standards Chapter 3745-1 of the Administrative Code	Agricultural Water supply designated use - waters are suitable for irrigation and livestock watering without treatment Table 7-12. Statewide water quality standards for the protection of agricultural uses.	Separate ones, depending on uses	Yes for - As - 100 μg/L, Be - 100 μg/L, Cd - 50 μg/L, Total Cr - 100 μg/L, Cu - 500 μg/L, Fe - 5,000 μg/L, Pb - 100 μg/L, Hg - 10 μg/L, Ni - 200 μg/L, Se - 50 μg/L; and Zn - 25,000 μg/L- applied as an OMZA (outside mixing zone average)	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
5	MI	PART 4. Water Quality Standards	Agriculture designated use - water for agricultural purposes, including livestock watering, irrigation, and crop spraying. R 323.1100 Designated uses. Rule 100. (1) At a minimum, all surface waters of the state are designated and protected for all of the following uses: (a) Agriculture.	(2) Levels of toxic substances in the surface waters of the state shall not exceed the aquatic life values specified in tables 1 and 2 [including metals], or, in the absence of such values, value derived according to the following processes, unless site-specific modifications have been developed pursuant to subdivision (r) of this subrule.	No	No
5	WI	Chapter NR 102, Water Quality Standards for Wisconsin Surface Waters	NR 102.01(2) Water quality standards shall protect the public interest, which includes the protection of public health and welfare and the present and prospective uses of all waters of the state for public and private water supplies, propagation of fish and other aquatic life and wild and domestic animals, domestic and recreational purposes, and agricultural, commercial, industrial, and other legitimate uses. In all cases where the potential uses are in conflict, water quality standards shall protect the general public interest.	Various aquatic life and human health standards, including those for metals, are provided as links in NR 105	No	No
5	IL	Title 35: Environmental Protection, Subtitle C: Water Pollution, Chapter I: Pollution Control Board, Part 302, Water Quality Standards, Subpart A: General Water Quality Provisions	Section 302.202 Purpose: The General Use standards will protect the State's water for aquatic life (except as provided in Section 302.213), wildlife, agricultural use, secondary contact use and most industrial uses and ensure the aesthetic quality of the State's aquatic environment. Primary contact uses are protected for all General Use waters whose physical configuration permits such use.	Section 302.208 Numeric Standards for Chemical Constituents includes human health and aquatic life standards for metals and other constituents	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
5	MN	Chapter 7050, Minnesota Pollution Control Agency, Waters of the State, Water Quality Standards for Protection of Waters of the State	IR means agriculture irrigation use, Class 4A waters; LS means agriculture livestock and wildlife use, Class 4B waters. 7050.0224 Specific Water Quality Standards for Class 4 Waters of the State; Agriculture and Wildlife. The quality of Class 4A waters of the state shall be such as to permit their use for irrigation without significant damage or adverse effects upon any crops or vegetation usually grown in the waters or area, including truck garden crops. The quality of Class 4B waters of the state shall be such as to permit their use by livestock and wildlife without inhibition or injurious effects.	7050.0220 Specific Water Quality Standards by Associated Use Classes. Numeric water quality standards are tabulated in this table for all uses applicable to four common categories of surface waters, so that all applicable standards for each category are listed together in subparts 3a to 6a.	No	No - but cite Handbook 60 published by the Salinity Laboratory of the USDA
6	LA	Title 33, Part IX, Subpart 1, March 2015 Environmental Regulatory Code 1	Agriculture designated use - the use of water for crop spraying, irrigation, livestock watering, poultry operations, and other farm purposes not related to human consumption. B. Water Use 1. It is the policy of the state of Louisiana that all state waters should be protected for recreational uses and for the preservation and propagation of desirable species of aquatic biota and indigenous species of wildlife. Use and value of water for public water supplies, agriculture, industry, and other purposes, as well as navigation, shall also be considered in setting standards.	Table 1A Numerical Standards for Metals and Inorganics for human health and aquatic life	No	No
6	AR	Arkansas Pollution Control and Ecology Commission Regulation No. 2, As Amended	Agricultural Water Supply - I - this beneficial use designates waters which will be protected for crop irrigation and/or consumption by livestock	Reg. 2.508 Toxic Substances - Toxic substances shall not be present in receiving waters, after mixing, in such quantities as to be toxic to human, animal, plant or aquatic life or to interfere with the normal propagation, growth and survival of the indigenous aquatic biota. Aquatic life standards for several metals are provided.	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
6	NM	Standards for Interstate and Intrastate Surface Waters, Title 20 Chapter 6 Part 4	Irrigation and Irrigation Storage; Livestock watering designated uses	Yes, and specific ones for Irr - irrigation; LW - livestock watering uses	Irrigation (dissolved metals in μg/L): Al: 5000; As: 100; Cd: 10; Cr: 100; Co: 50; Cu: 200; Pb: 5000; Mo: 1000; V: 100; Zn: 25000; Dissolved Se: 0.13 mg/L; Dissolved Se in presence of >500 mg/L SO ₄ = 0.25 mg/L; Livestock watering (dissolved metals in μg/L) = As: 200; Cd: 50; Cr: 1000; Co: 1000; Cu: 500; Pb: 100, Hg: 10; Se: 50; V: 100; Zn: 25000	No, but most match the NAS & NAE 1972 criteria except for Mo, Zn for irrigation, and Se for irrigation; not all of the NAS & NAE 1972 criteria are listed in these standards
6	ОК	2013 Oklahoma Water Quality Standards	785:45-5-13. Agriculture 4) Ag - Agriculture beneficial use. Agriculture - surface waters of the State shall be maintained so that toxicity does not inhibit continued ingestion by livestock or crop. Two sub-categories - Irrigation and Livestock. (2) Irrigation Agriculture means a subcategory of the Agriculture beneficial use requiring water quality conditions that are dictated by individual crop tolerances. (3) Livestock Agriculture is a subcategory of the Agriculture beneficial use requiring much less stringent protection than crop irrigation.	Table 2. Numerical Standards to Protect Beneficial Uses and All Subcategories Thereof contains fish and wildlife propagation, drinking water, and fish consumption human health standards	No, but Cl, SO4, and TDS	No
6	тх	2014 Texas Surface Water Quality Standards, §§307.1-307.10	(4) Water in the state must be maintained to preclude adverse toxic effects on aquatic life, terrestrial life, livestock, or domestic animals, resulting from contact, consumption of aquatic organisms, consumption of water, or any combination of the three.	Table 1 provides aquatic life standards for contaminants, including metals; Table 2 provides human health standards for contaminants, including metals	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
7	МО	Department of Natural Resources, Division 20— Clean Water Commission, Chapter 7—Water Quality	4. Irrigation (IRR)—Application of water to cropland or directly to cultivated plants that may be used for human or livestock consumption. Occasional supplemental irrigation, rather than continuous irrigation, is assumed. 5. Livestock and wildlife protection (LWP)—Maintenance of conditions in waters to support health in livestock and wildlife. All waters described in subsection (2)(A) shall also be assigned Livestock and wildlife protection and Irrigation designated uses, as defined in this rule.	Yes, a table provides metals standards for AQL = Protection of Aquatic Life, HHF = Human Health Protection-Fish Consumption, DWS = Drinking Water Supply, IRR = Irrigation, LWW = Livestock Wildlife Watering, and GRW = Groundwater	LWW (μg/L) - Co: 1000, Cu: 500; IRR (μg/L) - As: 100, Be: 100, Cr3: 100.	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards
7	IA	Chapter 61, Water Quality Standards, 567	567—61.3(455B) Surface water quality stanards. The general use segments are to be protected for livestock and wildlife watering, aquatic life, noncontact recreation, crop irrigation, and industrial, agricultural, domestic and other incidental water withdrawal uses.	Table 1. Standards for Chemical Constituents - Aquatic life, drinking water, and human health standards are provided.	No	No
7	NE	Title 117 - Nebraska Surface Water Quality Standards	004.02 Agricultural, 004.02A General Standards. Wastes or toxic substances introduced directly or indirectly by human activity in concentrations that would degrade the use (i.e., would produce undesirable physiological effects in crops or livestock) shall not be allowed. Agricultural Class A - conductivity < 2000 umhos/cm; nitrate/nitrate < 100 mg/L; and Se < 0.02 mg/L; Class B - no water quality standards assigned to protect this use.	Metals standards provide for human health and aquatic life.	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
7	KS	Kansas Department of Health and Environment Amended Regulation, Article 16 Surface Water Quality Standards	Agriculture Use - Livestock and Irrigation	Table 1a. Aquatic Life, Agriculture, And Public Health Designated Uses Numeric Standards.	WQC for Livestock (μg/L) - As: 200, Cd: 20 , Cr: 1000, Cu: 500, Pb: 100, Hg: 10, Ni: 500 , Se: 50, Zn: 25000; WQC for Irrigation (μg/L): As: 100, Cd: 10, Cr: 100, Cu: 200, Pb: 5000, Ni: 200, Se: 20, Zn: 2000.	No, but most match the NAS & NAE 1972 criteria except for Cd and Ni for livestock; not all of the NAS & NAE 1972 criteria are listed in these standards
8	SD	Chapter 74:51:01, Surface Water Quality Standards	74:51:01:42. Beneficial uses of waters established. (10) Irrigation Waters - designated use.	Surface water standards for human health and aquatic life for contaminants including metals are provided in a table	No, only conductivity and sodium	No
8	MT	Chapter 30 Water Quality, Subchapter 6, Surface Water Quality Standards and Procedures	17.30.622 A-1 Classification Standards, (2) Water quality must be maintained suitable for bathing, swimming, and recreation; growth and propagation of salmonid fishes and associated aquatic life, waterfowl and furbearers; and agricultural and industrial water supply	Circular DEQ-7, Montana Numeric Water Quality Standards for aquatic life and human health	No	No
8	ND	Chapter 33-16- 02.1. Standards for Quality for Waters of the State	33-16-02.1-09. Surface water classifications, mixing zones, and numeric standards. a. Class I and 1A streams. The quality of the waters in this class shall be suitable for the propagation or protection, or both, of resident fish species and other aquatic biota and for swimming, boating, and other water recreation. The quality of the waters shall be suitable for irrigation, stock watering, and wildlife without injurious effects. Agricultural uses - waters suitable for irrigation, stock watering, and other agricultural uses, but not suitable for use as a source of domestic supply for the farm unless satisfactory treatment is provided.	Aquatic life and human health water quality standards are presented in Table 2	Class I and IA streams - same as aquatic life	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
8	WY	Water Quality Rules and Regulations, Chapter 1, Wyoming Surface Water Quality Standards	Section 3. Water Uses. (a) Agriculture. For purposes of water pollution control, agricultural uses include irrigation or stock watering. All waters meet the agricultural water supply use.	Aquatic life and human health water quality standards are presented in a table	No	From WY Agricultural Use Protection Policy: Though the goal is simple, achieving it is not. For the most part, managing water quality for continued agricultural support requires managing the concentration and chemical makeup of dissolved solids. Because of local differences in crop types, soil types and natural water quality and availability, it isn't possible to establish simple numeric standards for pollutants such as TDS and SAR that will allow an efficient use of surface water for irrigation purposes. The determination of what is acceptable water quality for irrigation must necessarily involve an evaluation of local agricultural practices and background water quality conditions. For livestock watering uses, it is somewhat less complicated because there are fewer variables to consider.

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
8	со	Colorado Department of Public Health and Environment, Water Quality Control Commission, Regulation No. 31, The Basic Standards and Methodologies for Surface Water (5 CCR 1002-31)	31.13 State Use Classifications, (b) Agriculture: These surface waters are suitable or intended to become suitable for irrigation of crops usually grown in Colorado and which are not hazardous as drinking water for livestock.	Tables I and II provide aquatic life standards, human health standards, agricultural standards, and domestic water quality standards for metals	As (μg/L): 100(A) (30-day); Be (μg/L): 100(A,B) (30-day); Cd (μg/L): 10(B) (30-day); Cu (μg/L): 200(B); Pb (μg/L): 100(B) (30-day); Mn (μg/L): 100(B) (30-day); Mo (μg/L): 200(B) (30-day); Ni (μg/L): 200(B) (30-day); Se (μg/L): 20(B,D) (30-day); Zn (μg/L): 2000(B) (30-day)	Most standards matched the NAS & NAE 1972 criteria except for manganese and molybdenum; not all of the NAS & NAE 1972 criteria are listed in these standards. Cites Raisbeck et al. 2007 for Mo for 300 μg/L Indicates how Mo standards was established for Agricultural use (page 197). The molybdenum criterion of 300 μg/l for agriculture is intended to protect livestock from the effects of molybdenosis. The agriculture table value assumes that the safe copper:molybdenum ratio is 4:1. Total copper and molybdenum intakes are calculated from the following equations:Cu intake mg/day = [([Cu] forage, mg/kg) x (forage intake, kg/day)] + [([Cu] water, mg/l) x (water intake, L/day)] + (Cu supplementation, mg/day)Mo intake mg/day = [([Mo] forage, mg/kg) x (forage intake, kg/day)] + (Mo supplementation, mg/day)The assumed values for these equations are as follows:[Cu] forage = 7 mg/kg, [Mo] forage = 0.5 mg/kg, forage intake = 6.8 kg/day, [Cu] water = 0.008 mg/L, [Mo] water = 0.375 mg/L, water intake = 54.6 L/day, Cu supplementation = 48 mg/day, Mo supplementation = 0 mg/day.Food and water intake is based on a 273 kg (600 lb) feeder steer consuming 6.8 kg/day of dry matter and 20% of its body weight in water per day. Sitespecific water intake rates should be based on estimates of actual water consumption rates based on maximum air temperatures rather than need since cattle typically consume more water than strictly necessary. In general, assumptions about copper, molybdenum, and sulfur exposure for the purpose of deriving site-specific molybdenum standards should reflect current or potential exposure levels that are reasonable for the area, including dietary supplements. When calculating site-specific standards, copper supplementation should be as low as possible and not higher than 400 mg/day.

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
8	UT	R317 - Environmental Quality, Water Quality	Class 4 - protected for agricultural uses including crop irrigation and stock watering.	R317-2-14 Numeric Standards - Table 2.14.1 Numeric Table for Domestic, Recreation, and Agricultural Uses, includes values for metals	Numeric Ag Standards in mg/L - As: 0.1, Cd: 0.01, Cr: 0.10, Cu: 0.2; Pb: 0.1; Se: 0.05	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards
9	AZ	Title 18: Environmental Quality, Chapter 11: Department of Environmental Quality, Article 1: Water Quality Standards	Agl - agriculture irrigation means the use of a surface water for crop irrigation; AgL - agricultural livestock watering means the use of a surface water as a water supply for consumption by livestock. R18-11-104. Designated Uses A. The Director shall adopt or remove a designated use or subcategory of a designated use by rule. B. Designated uses of a surface water may include full-body contact, partial-body contact, domestic water source, fish consumption, aquatic and wildlife (cold water), aquatic and wildlife (ephemeral), aquatic and wildlife (effluent-dependent water), agricultural irrigation, and agricultural livestock watering.	APPENDIX A. Numeric Water Quality Standards, Table 1. Water Quality Standards By Designated Use provides standard for various designated uses for metals and other chemicals	Metals in μg/L: As - AgI: 2,000 T, AgL: 200 T; Cd - AgI and AgL: 50; total Cr - AgI and AgL: 1000; Cu - AgI: 5000 T, AgL: 500 T'; Pb - AgI: 10000 T, AgL: 100 T; Mn - AgI: 10000; Hg - AgL: 10 T; Se - AgI: 20 T, AgL: 50 T; Zn - AgI: 10,000 T, AgL: 25,000 T	No, but the ones listed match the NAS & NAE 1972 criteria; irrigation standards listed match the NAS & NAE 1972 20-year irrigation criteria. Not all of the NAS & NAE 1972 criteria are listed in these standards.
9	ні	Amendment and Compilation of Chapter 11-54, Hawaii Administrative Rules	§11-54-3 Classification of water uses, (b) Inland waters. (2) Class 2 - protective of ag water supplies	Numeric standards for aquatic life and human health are provided in a table; values are provided for several metals	No	No
9	CA (9 Water Quality Control Boards)	1 - Water Quality Control Plan for the North Coast Region	All surface and ground waters of the State are considered to be suitable, or potentially suitable, for municipal or domestic water supply and should be so designated by the Regional Boards. Waters designated for use as agricultural supply (AGR) shall not contain concentrations of chemical constituents in amounts which adversely affect such beneficial use.	Tables of Inorganic, Organic, and Fluoride Concentrations Not to Be Exceeded in Domestic or Municipal Supply, as well as tables of Objectives for Protection of Marine Aquatic Life are provided	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	CA (9 Water Quality Control Boards)	2 - San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan)	2.1.1 AGRICULTURAL SUPPLY (AGR) - applicable to entire state. Uses of water for farming, horticulture, or ranching, including, but not limited to, irrigation, stock watering, or support of vegetation for range grazing. The standards discussed under municipal and domestic water supply (MUN) also effectively protect farmstead uses. To establish water quality standards for livestock water supply, the Water Board must consider the relationship of water to the total diet, including water freely drunk, moisture content of feed, and interactions between irrigation water quality and feed quality. The University of California Cooperative Extension has developed threshold and limiting concentrations for livestock and irrigation water. Continued irrigation often leads to one or more of four types of hazards related to water quality and the nature of soils and crops. These hazards are (1) soluble salt accumulations, (2) chemical changes in the soil, (3) toxicity to crops, and (4) potential disease transmission to humans through reclaimed water use. Irrigation water classification systems, arable soil classification systems, and public health standards related to reuse of wastewater have been developed with consideration given to these hazards.	3.3.22 Constituents of Concern for Municipal and Agricultural Water Supplies: At a minimum, surface waters designated for use as domestic or municipal supply (MUN) shall not contain concentrations of constituents in excess of the maximum (MCLs) or secondary maximum contaminant levels (SMCLs) specified in the following provisions of Title 22, which are incorporated by reference into this plan: Table 64431-A (Inorganic Chemicals) of Section 64431, Water Quality Control Plan for the San Francisco Bay Basin and Table 64433.2-A (Fluoride) of Section 64433.2, Table 64444-A (Organic Chemicals) of Section 64444, and Table 64449-A (SMCLs-Consumer Acceptance Limits) and 64449-B (SMCLs-Ranges) of Section 64449. This incorporation-by-reference is prospective, including future changes to the incorporated provisions as the changes take effect. Table 3-5 contains water quality objectives for municipal supply, including the MCLs contained in various sections of Title 22 as of the adoption of this plan.At a minimum, surface waters designated for use as agricultural supply (AGR) shall not contain concentrations of constituents in excess of the levels specified in Table 3-6.	Yes, see Table 3-6 on PDF pg 98 (in units of mg/L for livestock watering): Al: 5.0; As: 0.2; Cd: 0.05; Cr: 1.0; Co: 1.0; Cu: 0.5; Pb: 0.1; Mo: 0.5; Se: 0.05; V: 0.1; Zn: 25.	a. For an extensive discussion of water quality for agricultural purposes, see "A Compilation of Water Quality Goals," Central Valley Regional Water Quality Control Board, May 1993. The ones listed match the NAS & NAE 1972 livestock standards (except for Mo, which matches the NAS & NAE 1972 irrigation standard). Not all of the NAS & NAE 1972 criteria are listed in these standards.

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	CA (9 Water Quality Control Boards)	3 - Water Quality Control Plan for the Central Coastal Basin	Chemical Constituents - Waters shall not contain concentrations of chemical constituents in amounts which adversely affect the agricultural beneficial use. Interpretation of adverse effect shall be as derived from the University of California Agricultural Extension Service guidelines provided in Table 3-1. In addition, waters used for irrigation and livestock watering shall not exceed concentrations for those chemicals listed in Table 3-2. Salt concentrations for irrigation waters shall be controlled through implementation of the antidegradation polic (Appendix A-2) to the effect that mineral constituents of currently or potentially usable waters shall not be increased. It is emphasized that no controllable water quality factor shall degrade the quality of any groundwater resource or adversely affect long-term soil productivity. Where wastewater effluents are returned to land for irrigation uses, regulatory controls shall be consistent with Title 22 of the California Code of Regulations and with relevant controls for local irrigation sources.	Yes, but specific ones for agriculture.	Table 3-2. Water Quality Objectives for Agricultural Water Uses in mg/L- see PDF page 47: Al: 5.0 - Irrig; 5.0 - Livestock; As: 0.1 - Irrig; 0.2 - Livestock; Be: 0.1 - Irrig; 0.05 - Livestock Cr: 0.10 - Irrig; 1.0 - Livestock Cr: 0.10 - Irrig; 1.0 - Livestock Co: 0.05 - Irrig; 1.0 - Livestock Cu: 0.2 - Irrig; 0.5 - Livestock Fe: 5.0 - Irrig; Pb: 5.0 - Irrig; O.1 - Livestock Li: 2.5 - Irrig; Mn: 0.2 - Irrig; Hg: 0.01 - Livestock; Mo: 0.01 - Irrig; 0.5 - Livestock; Ni: 0.2 - Irrig; Se: 0.02 - Irrig; 0.05 - Livestock; V: 0.1 - Irrig; 0.10 - Livestock; Zn: 2.0 - Irrig; 25 - Livestock	Values listed match those in NAS & NAE 1972; molybdenum value for livestock is likely the aquatic life criterion from NAS & NAE 1972 because no livestock standards was provided in the 1972 source. Footnote: a. Values based primarily on "Water Quality Standards 1972" National Academy of Sciences-National Academy of Engineers, Environmental Study Board, ad hoc Committee on Water Quality Standards furnished as recommended guidelines by University of California Agriculture Extension Service, January 7, 1974; maximum values are to be considered as 90 percentile values not to be exceeded.
9	CA (9 Water Quality Control Boards)	4 - Los Angeles Region Basin Plan	Agricultural Supply (AGR) - Uses of water for farming, horticulture, or ranching including, but not limited to, irrigation, stock watering, or support of vegetation for range grazing.	Surface waters shall not contain concentrations of chemical constituents in amounts that adversely affect any designated beneficial use. A table of standards (including for metals) is provided for domestic or municipal supply.	No	No

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?	
9	CA (9 Water Quality Control Boards)	5a- Water Quality Control Plan for the Sacramento River and San Joaquin River Basins	Agricultural Supply (AGR) - Uses of water for farming, horticulture, or ranching including, but not limited to, irrigation (including leaching of salts), stock watering, or support of vegetation for range grazing.	Waterbody-specific standards	No	No	
9	CA (9 Water Quality Control Boards)	5b- Water Quality Control Plan for the Tulare Lake Basin	Agricultural Supply (AGR) - Uses of water for farming, horticulture, or ranching including, but not limited to, irrigation (including leaching of salts), stock watering, or support of vegetation for range grazing.	References California's standards for domestic or municipal supply	No	No	
9	CA (9 Water Quality Control Boards)	6 - Water Quality Control Plan for the Lahontan Region North and South Basins	AGR Agricultural Supply. Beneficial uses of waters used for farming, horticulture, or ranching, including, but not limited to, irrigation, stock watering, and support of vegetation for range grazing.	Waterbody-specific standards	No	No	
9	CA (9 Water Quality Control Boards)	7 - Water Quality Control Plan, Colorado River Basin - Region 7	AGR Agriculture Supply Uses of water for farming, horticulture, or ranching including, but not limited to, irrigation, stock watering, or support of vegetation for range grazing.	Surface waters shall not contain concentrations of chemical constituents in amounts that adversely affect any designated beneficial use. A table of standards (including for metals) is provided for domestic or municipal supply.	No	No	
9	CA (9 Water Quality Control Boards)	8 - Water Quality Control Plan - Santa Ana River Basin (8)	AGR Agriculture Supply Uses of water for farming, horticulture, or ranching including, but not limited to, irrigation, stock watering, or support of vegetation for range grazing.	A table of metals standards is provided for domestic or municipal supply.	No	No	

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	CA (9 Water Quality Control Boards)	9 - Water Quality Control Plan for the San Diego Basin	Agricultural Supply (AGR) - Includes uses of water for farming, horticulture, or ranching including, but not limited to, irrigation, stock watering, or support of vegetation for range grazing.	Table 3-4 provides metals standards for domestic or municipal supply. Table C-1 provides metals standards for specific waterbody types and for drinking water.	No	No
9	NV	Chapter 445A - Water Controls	NAC 445A.122 Standards applicable to beneficial uses. (NRS 445A.425, 445A.520): 1. The following standards are intended to protect both existing and designated beneficial uses and must not be used to prohibit the use of the water as authorized under title 48 of NRS: (a) Watering of livestock. The water must be suitable for the watering of livestock without treatment. (b) Irrigation. The water must be suitable for irrigation without treatment.	NAC 445A.1236 Standards for toxic materials applicable to designated waters. (NRS 445A.425, 445A.520) 1. Except for waters which have site-specific standards for toxic materials or as otherwise provided in this section, the standards for toxic materials prescribed in subsection 2 are applicable to the waters specified in NAC 445A.123 to 445A.2234, inclusive.	As: 100 μg/L (Irrigation), 200 μg/L (Watering of Livestock); Be (Irrigation): 100 μg/L; Cd: 10 μg/L (irrigation), 50 μg/L (Watering of Livestock); Cr (total): 100 μg/L (Irrigation), 1000 (Watering of Livestock); Cr: 200 μg/L (Irrigation), 500 μg/L (Watering of Livestock); Fe: 5,000 (Irrigation); Pb: 5,000 μg/L (Irrigation), 100 μg/L (Watering of Livestock); Mn: 200 μg/L (Irrigation); Hg: 10 μg/L (Watering of Livestock); Ni: 200 μg/L (Irrigation); Se: 20 μg/L (Irrigation), 50 μg/L (Watering of Livestock); Zn: 2000 μg/L (Irrigation); 25,000 μg/L (Watering of Livestock)	Values listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards. They cite Gold book, Red Book, and Blue book (mainly Blue Book); c. U.S. Environmental Protection Agency, Pub. No. EPA 440/9-76-023, Quality Standards for Water (Red Book) (1976); d. National Academy of Sciences, Water Quality Standards (Blue Book) (1972).

Table A-1 (continued).

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
10	AK	18 AAC 70, Water Quality Standards	18 AAC 70.020. Protected water use classes and subclasses; water quality standards; water quality standards table. (a) Classes and subclasses of use of the state's water protected by standards set out under (b) of this section are: (1) fresh water, (A) water supply, (i) drinking, culinary, and food processing; (ii) agriculture, including irrigation and stock watering; (iii) aquaculture; and (iv) industrial.	The concentration of substances in water may not exceed the numeric standards for drinking and stockwater and irrigation water shown in the Alaska Water Quality Standards Manual (see note 5). 18 AAC 70.236. Waterbodies subject to site-specific standards. (a) Under 18 AAC 70.235, the department has established site-specific standards that modify certain general standards set out in 18 AAC 70.020(b) for the waterbodies listed in (b) of this section. The site-specific standards apply only to the affected designated use class indicated in (b) of this section. All other standards set out in 18 AAC 70.020(b) continue to apply to the waterbodies listed in (b) of this section. Some metals are listed here.	Al: 5000 μg/L (irrigation); As: 50 μg/L (stock watering), 100 μg/L (irrigation); Be: 100 μg/L (irrigation); Cd: 10 μg/L (stock watering), 10 μg/L (irrigation); Cr: 100 μg/L (total recoverable - irrigation); Cr: 50 μg/L (stock watering); Cu: 200 μg/L (irrigation); Fe: 5000 μg/L (irrigation); Pb: 50 μg/L (stock water), 5000 μg/L (irrigation water); Mn: 200 μg/L (irrigation); Mo: 10 μg/L (irrigation); Ni: 200 μg/L (irrigation); Se: 10 μg/L (stock watering), 20 μg/L (irrigation); V: 100 μg/L (irrigation); Output (irrigation); V: 100 μg/L (irrigation); Output (irrigation); V: 100 μg/L (irrigation); Output (irrigation)	Values listed match the NAS & NAE 1972 and FWPCA 1968 standards; not all of the NAS & NAE 1972 and FWPCA standards are listed in these standards. References U.S. EPA Blue Book, U.S. EPA Green Book
10	ID	IDAPA 58, Title 01, Chapter 02, 58.01.02 - Water Quality Standards	08. Beneficial Use. Any of the various uses which may be made of the water of Idaho, including, but not limited to, domestic water supplies, industrial water supplies, agricultural water supplies, navigation, recreation in and on the water, wildlife habitat, and aesthetics.	A table for 210.Numeric Criteria for Toxic Substances for Waters Designated for Aquatic Life, Recreation, or Domestic Water Supply Use is provided and includes metals.	No	02. Agricultural. Water quality criteria for agricultural water supplies will generally be satisfied by the water quality criteria set forth in Section 200. Should specificity be desirable or necessary to protect a specific use, "Water Quality Criteria 1972" (Blue Book), Section V, Agricultural Uses of Water, U.S. EPA, March 1973 will be used for determining criteria.
10	OR	Division 41 Water Quality Standards: Beneficial Uses, Policies, and Criteria for Oregon	Not listed as a designated use; standards are undergoing a triennial review	Tables for aquatic life and human health standards include metals	No	No

EPA Region	State	Source	Does State Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
10	WA	Water Quality Standards for Surface Waters of the State of Washington, Chapter 173-201A WAC	(3) Water supply uses. The water supply uses are domestic, agricultural, industrial, and stock watering. 173-201A-600 Use designations — Fresh waters. (1) All surface waters of the state not named in Table 602 are to be protected for the designated uses of: Salmonid spawning, rearing, and migration; primary contact recreation; domestic, industrial, and agricultural water supply; stock watering; wildlife habitat; harvesting; commerce and navigation; boating; and aesthetic values.	Aquatic life standards (including for metals) are provided in a table	No, but they have proposed some	Refer to Proposed Agricultural Water Supply Criteria Decision Process for Ecology's Proposed Rule. This document lists criteria for metals and other parameters and cites two key works (NAS and NAE, 1972; and Ayes and Westcot, 1985)

Table A-2.Compilation of Tribes Agricultural Water Quality Standards

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
2	Saint Regis Mohawk Tribe	Yes	Water Quality Standards for the Saint Regis Mohawk Tribe	Primary contact and ceremonial use, agricultural and water supply use are other designated uses of Tribal Surface Waters. Agricultural Water Supply Use: the use of water for irrigation. Agriculture or Farm Water Supply listed as a designated use.	Yes, but for other uses (human health, aquatic life)	No	No
4	Miccosukee Tribe of Indians of Florida	Yes	Water Quality Standards for Surface Waters of the Miccosukee Tribe of Indians of Florida	CLASS III-B WATERS: Those Tribal water bodies which are used for agricultural or livestock water supply or other beneficial uses. Designated use - Traditional Agriculture, i.e., growing corn without the addition of fertilizers or other chemicals	Yes, but they are human health ambient water quality standards that are applicable to Class III-B waters	No	No
4	Seminole Tribe of Florida	Yes	Seminole Tribe of Florida, Part 1, General Provisions for Water Quality	Class 3. Agricultural purposes.	TABLE 12 Standards for all Reservation Surface Waters on the Big Cypress and Brighton Reservations for metals standards and other standards	Yes - As: $\leq 10 \mu g/L$; Cd: exp(0.7409[InH]-; Cr+3: exp(0.819[InH]+0.6848), Cr6: 11 $\mu g/L$; Cu: exp(0.8545[InH]-1.702); Pb: Pbexp(1.273[InH]-; Hg: 0.02 $\mu g/L$; Ni: exp(0.846[InH]+0.0584); Ag: exp(1.72[InH]-6.59); Zn: exp(0.8473[InH]+0.884)	No - values are mainly the same as those for protecting aquatic life uses, except for Hg (which is greater than the aquatic life criterion)
5	Bad River Band of the Lake Superior Tribe of Chippewa Indians	Yes	Bad River Band of the Lake Superior Tribe of Chippewa Indians Water Quality Standards	Commercial (C2). Supports the use of water in propagation of fish fry for the Tribal Hatchery and/or irrigation of community agricultural projects.	Tables provide aquatic life standards, human health standards, and standards for the protection of wildlife for most metals.	No, but based on designated use table, all waterbodies are covered by aquatic life standards	No
5	Fond du Lac Band of Lake Superior Chippewa	Yes	Fond du Lac Band of Lake Superior Chippewa Water Quality Standards of the Fond du Lac Reservation	Section 302 Standards of Designated Use, e. Cultural, f. Agricultural: The water quality is adequate for uses in irrigation and livestock watering.	Table provides standards for aquatic life, human health, and wildlife, including for metals.	No	No

Table A-2 (continued).

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
5	Grand Portage Band of Chippewa	Yes	Grand Portage Band of Chippewa, Water Quality Standards	Wild Rice Areas: A stream, river, lake, or impoundment, or portion thereof, presently has or historically had the potential to sustain the growth of wild rice (also known as <i>Zizania palustris</i> or <i>manoornin</i>).V. DESIGNATED USES. E. CULTURAL: 1. Wild Rice Areas - a stream, river, lake, wetland or impoundment, or portion thereof, presently, historically or with the potential to be vegetated with wild rice. F. FORESTRY WATER SUPPLY - all waters of the Reservation shall be of sufficient quality for use in forestry applications.	Waters must be free from substances entering the water as a result of human activity in concentrations that are toxic or harmful to human, animal, plant or aquatic life. Tables provide aquatic life standards, human health standards, and standards for the protection of wildlife for most metals.	No	No
5	Sokaogon Chippewa Community	Not numeric ones	Sokaogon Chippewa Community Water Quality Standards	B. [151.11] Designated Uses, Tribal Designated Uses include: 5) Agricultural/Forestry: Use of All Tribal Waters in forestry and/or agricultural practices.	1) For all pollutants in the Great Lakes Guidance (40 CFR Part 132), the applicable criterion will be the more protective value of either: a) SCC Ambient Water Quality Values, as defined in Section V of this document and reported in the SCC Clean Water Act 106 Grants Final Report, using statistically sound and scientifically defensible methods that are being developed by the SCC Environmental Department, or [Note, that no specific WQC are provided in Section V of the document] b) U.S. EPA Great Lakes Guidance Numeric Standards (40 CFR. 132.6, Tables 1 - 4). Tables provide aquatic life standards, human health standards, and standards for the protection of wildlife for most metals.	No	No

Table A-2 (continued).

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
6	Pueblo of Acoma	Yes	Pueblo of Acoma Water Quality Standards	B. Specific Water Quality Uses and Standards.6. Agricultural Irrigation (AgI) and Agricultural Livestock Watering (AgL). Agricultural irrigation means the use of surface waters or groundwaters for irrigation of crops. Agricultural livestock watering means the use of surface waters or groundwaters as a supply for water consumption by livestock. Standards specific to the uses are outlined in Appendix A, Table A-3.	Table A-3 provides standards applicable to Agricultural Irrigation, Agricultural Livestock Watering, and other uses (e.g., aquatic life, fish consumption, domestic water source, partial body contact), including for metals. Agricultural irrigation: The use of a water for the irrigation of crops. Agricultural livestock watering: The use of a water as a supply of water for consumption by livestock.	Available for dissolved metals: Al (5.0 mg/L - for both Agl and AgL), As (0.10 Agl and 0.20 mg/L for AgL), Cd: (0.01 for Agl and 0.05 for AgL); Cr (0.10 for Agl and 1.0 for AgL - both for total and hex); Co (0.05 for Agl and 1.0 for AgL); Cu (0.20 for Agl and 0.5 for AgL); Pb (5.0 for Agl and 0.1 for AgL); Pb (5.0 for Agl and 0.1 for AgL); Hg (0.012 µg/L for AgL); Se (0.13 mg/L, 0.25 mg/L (when SO4 > 500 mg/L) for Agl and 0.02 mg/L for Agl.); V (0.1 mg/L for both Agl and AgL); Zn (2.0 mg/L for Agl and 26.0 mg/L for Agl and	No, but the ones listed match the NAS & NAE 1972 criteria, except for Hg and Se; not all of the NAS & NAE 1972 criteria are listed in these standards.
6	Pueblo of Isleta	Yes	Pueblo of Isleta, Surface Water Quality Standards	Agricultural water supply use means the use of water for irrigation and livestock watering. Agricultural Water Supply Use. Agricultural water supply use means the use of water for irrigation and livestock watering.	SECTION IV. Water Body Uses and Standards Specific to the Uses, F.	Available for dissolved metals: Al (5.0 mg/L - for both livestock and irrigation), As (0.20 mg/L for livestock), Cd: (0.05 for livestock); Cr (1.0 for livestock); Co (0.05 for irrigation and 1.0 for livestock); Cu (0.5 for livestock); Hg - total (0.01 for livestock); Mo (0.01 for irrigation), Se - total recoverable (0.05 for livestock); V (0.1 for both livestock and irrigation)	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQ5 Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
6	Pueblo of Laguna	Yes	Pueblo of Laguna Water Quality Standards	(27) Irrigation means the intentional application of water to agricultural crops and other plants by means of ditches, pipes, sprinkler systems, water-spreading berms, or other means, whether traditional, historical, or contemporary. (28) Livestock and Wildlife Watering means water consumed by livestock, nondomestic animals (including migratory birds), or both for water supply, habitation, growth, or propagation.	Subchapter IV. Designated Uses and Associated Numeric Water Quality Standards, Section 11-2-41. List of Designated Uses and Associated Standards	Irrigation: Al (dissolved): 5.0 mg/L; Co (dissolved): 0.05 mg/L; Li (dissolved): 2.5 mg/L, Mo (dissolved): 0.1 mg/L. Livestock and Wildlife Watering (dissolved): Al: 5.0 mg/L; As: 0.2 mg/L; Cd: 0.05 mg/L, Cr: 1.0 mg/L; Co: 1.0 mg/L; Cu: 0.5 mg/L; Se: 0.05 mg/L; and V: 0.1 mg/L.	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards.
6	Pueblo of Nambé	Yes	Pueblo of Nambé Water Quality Code	Agricultural Water Supply Use - The use of water for irrigation. Designated uses include irrigation, livestock watering and wildlife habitat. B.4. Livestock Watering and Wildlife Habitat Use: Waters designated for livestock watering and wildlife habitat use shall not exceed the numeric criteria listed in Table 4.B.5. Irrigation Use: Waters designated for irrigation use (Figure 3) shall not exceed the numeric criteria shown in Table 5. Livestock watering & wildlife habitat - A stream reach, lake, or impoundment where water temperature and other characteristics are suitable for consumption by livestock or wildlife or plants for wildlife that are not considered as pathogens or vectors for pathogens.	B. Water Body Uses and Specific Standards	Livestock water and wildlife habitat (dissolved): Al: 5.0 mg/L; As: 0.2 mg/L, Cd: 0.05 mg/L; Cr: 1.0 mg/L; Co: 1.0 mg/L; Pb: 0.1 mg/L; Hg (total): 0.012 µg/L; Se (total): 0.002 mg/L; V: 0.1 mg/L; Zn: 25.0 mg/L. Irrigation use (dissolved): Al: 5.0 mg/L; As: 0.10 mg/L; Cd: 0.01 mg/L; Cd: 0.01 mg/L; Co: 0.05 mg/L; Cu: 0.20 mg/L; Cb: 0.01 mg/L; Co: 0.01 mg/L; Se (in the presence of < 500 mg/L SO4): 0.13 mg/L; V: 0.1 mg/L; Zn: 2.0 mg/L; Se (in the presence of > 500 mg/L SO4): 0.25 mg/L	No, but the ones listed match the NAS & NAE 1972 criteria, except for Hg and Se; not all of the NAS & NAE 1972 criteria are listed in these standards.
6	Ohkay Owingeh	Yes	Ohkay Owingeh Surface Water Quality Standards	SECTION IV. Water Body Uses and Standards Specific to the Uses, G. Agricultural Water Supply Use: Agricultural water supply use means the use of water for irrigation and livestock watering.	SECTION IV. Water Body Uses and Standards Specific to the Uses	Livestock (dissolved): Al: 5.0 mg/L; Co: 1.0 mg/L; V: 0.1 mg/L; Irrigation (dissolved): Al: 5.0 mg/L; Co: 0.05 mg/L; Li: 2.5 mg/L; Mo: 0.01 mg/L; V: 0.1 mg/L	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
6	Pawnee Nation	No	Pawnee Nation - Partial Approval of Pawnee Nation of Oklahoma Application for Program Authorization under §303(c) and §401 of the Clean Water Act	No	No	No	No
6	Picuris Pueblo	Yes	Water Quality Code for the Picuris Pueblo Adopted May	Agricultural Water Supply Use - The use of water for irrigation.	2. Specific Water Quality Standards	D. Livestock Watering & Wildlife Habitat Use (dissolved): Al: 5.0 mg/L; As: 200 µg/L; Co: 1.0 mg/L; Co: 1.0 mg/L; Co: 1.0 mg/L; Pb: 0.1 mg/L; Hg (total): 0.012 µg/L; Se (total): 0.002 mg/L; V: 0.1 mg/L; Zn: 25.0 mg/L. E. Irrigation Use (dissolved): Al: 5.0 mg/L; As: 0.10 mg/L; Cd: 0.01 mg/L; Cr: 0.10 mg/L; Co: 0.05 mg/L; Cu: 0.20 mg/L; Co: 0.05 mg/L; Cu: 0.20 mg/L; As: 5.0 mg/L; Mo: 0.01 mg/L; Se (in presence of < 500 mg/L; Se (in presence of > 500 mg/L; Se (in presence of > 500 mg/L; Of So4): 0.25 mg/L.	No, but the ones listed match the NAS & NAE 1972 criteria, except for Hg and Se; not all of the NAS & NAE 1972 criteria are listed in these standards.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
6	Pueblo of Pojoaque	Yes	Pueblo of Pojoaque Water Quality Standards	A. Segments Designated for Irrigation, 8. Segments Designated for Livestock and Wildlife Habitat	Section IV. Water Body Uses and Standards Specific to Use	A. Segments Designated for Irrigation (Dissolved): Al: 5.0 mg/L; As: 0.10 mg/L; Cd: 0.01 mg/L; Cr: 0.10 mg/L; Co: 0.05 mg/L; Cu: 0.20 mg/L; Pb: 5.0 mg/L; Se (in presence of > 500 mg/L sulfate): 0.25 mg/L; Se (in presence of < 500 mg/L sulfate): 0.10 mg/L; Zn: 2.0 mg/L. B. Segments Designated for Livestock and Wildlife Habitat (Dissolved): Al: 5.0 mg/L; As: 0.2 mg/L; Cd: 0.05 mg/L; Cu: 0.50 mg/L; Cv: 1.0 mg/L; Cu: 0.50 mg/L; Co: 1.0 mg/L; Cu: 0.50 mg/L; Dissolved): 0.10 mg/L; Cu: 0.50 mg/L; Co: 1.0	No, but the ones listed match the NAS & NAE 1972 criteria, except for Hg and Se; not all of the NAS & NAE 1972 criteria are listed in these standards.
6	Pueblo of Sandia	Yes	Pueblo of Sandia Water Quality Standards	G. Agricultural Water Supply Use Agricultural water supply use means the use of water for irrigation and livestock watering.	Section IV. Water Body Uses and Standards Specific to the Uses	Livestock (dissolved): Co: 1.0 mg/L; V: 0.1 mg/L. Irrigation (dissolved): Co: 0.05 mg/L, Li: 2.5 mg/L; Mo: 1.0 mg/L; V: 0.1 mg/L	No, but the ones listed match the NAS & NAE 1972 criteria, except for Mo; not all of the NAS & NAE 1972 criteria are listed in these standards.
6	Pueblo of Santa Clara	Yes	Water Quality Code of the Pueblo of Santa Clara	Irrigation and Livestock and Wildlife are designated uses	Section IV. Standards Applicable to Existing, Attainable or Designated Uses	D. Irrigation (dissolved): Al: 5.0 mg/L; As: 0.10 mg/L; Cd: 0.01 mg/L; Cd: 0.01 mg/L; Cc: 0.05 mg/L; Cu: 0.20 mg/L; Pb: 5.0 mg/L; Mo: 1.0 mg/L; Se: 0.13 mg/L; V: 0.1 mg/L; Zn: 2.0 mg/L. F. Livestock and Wildlife (dissolved): 5.0 mg/L; As: 0.2 mg/L; Cd: 0.05 mg/L; Cu: 0.5 mg/L; Co: 1.0 mg/L; Cu: 0.5 mg/L; Pb: 0.1 mg/L; Hg (total): 0.012 µg/L; Se (total): 0.002 mg/L; V: 0.1 mg/L; 25.0 mg/L	No, but the ones listed match the NAS & NAE 1972 criteria, except for Hg, Mo, and Se; not all of the NAS & NAE 1972 criteria are listed in these standards.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
6	Pueblo of Santa Ana	Yes	Pueblo of Santa Ana Water Quality Standards	Agricultural water supply use means the use of water for irrigation and livestock watering.	Section IV. Water Body Uses and Standards Specific to the Uses	F. Agricultural water supply use: Livestock (dissolved): Co: 1.0 mg/L, V: 0.1 mg/L; Irrigation: Co: 0.05 mg/L, Li: 2.5 mg/L; Mo: 1.0 mg/L; V: 0.1 mg/L	No, but the ones listed match the NAS & NAE 1972 criteria, except for Mo; not all of the NAS & NAE 1972 criteria are listed in these standards.
6	Pueblo of Taos	Yes	Pueblo of Taos, Water Quality Standards	Irrigation and Wildlife and Livestock Watering are designated uses	Appendices: Numeric Standards for Designated Uses	E. Agriculture & Wildlife Watering Irrigation Criterion (dissolved, μg/L): Al: 5000; As: 100, Cd: 10, Cr: 100, Co: 50, Cu: 200, Pb: 5000, Mo: 1000, Se: 130, Se (with sulfate > 500 mg/L): 250, V: 100, Zn: 2000. Wildlife & Livestock Watering Criterion (dissolved, μg/L): Al: 5000, As: 200, Cd: 50, Cr: 1000, Co: 1000, Cu: 500, Pb: 100, Hg (total): 10, Se: 50, V: 100, Zn: 25000.	No, but the ones listed match the NAS & NAE 1972 criteria, except for Mo and Se; not all of the NAS & NAE 1972 criteria are listed in these standards.
6	Pueblo of Tesuque	Yes	Pueblo of Tesuque Water Quality Standards	Section IV. Water Body Uses and Standards Specific to Use	Section IV. Water Body Uses and Specific Standards, B. Water Body Uses and Specific Standards	E. Livestock Watering & Wildlife Habitat Use (dissolved, mg/L): Al: 5.0, As: 0.2, Cd: 0.05, Cr: 1.0, Co: 1.0, Cu: 0.5, Pb: 0.1, Hg (total): 0.012 μg/L, Se: (total): 0.002, V: 0.1, Zn: 25.0 F. Irrigation Use (dissolved, mg/L): Al: 5.0, As: 0.10, Cd: 0.01, Cr: 0.10, Co: 0.05, Cu: 0.20, Pb: 5.0, Mo: 0.01, Se (in the presence of <500 mg/L of SO4): 0.13, V: 0.1, Zn: 2.0	No, but the ones listed match the NAS & NAE 1972 criteria, except for Hg and Se; not all of the NAS & NAE 1972 criteria are listed in these standards.
8	Fort Peck Assiniboine and Sioux Tribes	Yes	Water Quality Standards for the Fort Peck Assiniboine and Sioux Tribes	Agriculture: These surface waters are suitable or intended to become suitable for crops usually grown on the reservation and which are not hazardous as drinking water for livestock.	Aquatic life standards and human health ambient water quality standards for pollutants, including metals - see Table B-1	No	No

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
8	Blackfeet Tribe	No					
8	Northern Cheyenne Tribe of the Northern Cheyenne Indian Reservation	Yes	Northern Cheyenne Tribe of the Northern Cheyenne Indian Reservation Surface Water Quality Standards	13. Agriculture: These surface waters are suitable or intended to become suitable for crops usually grown on the reservation and are not hazardous as drinking water for livestock	Aquatic life standards and human health ambient water quality standards for pollutants, including metals - see Appendix A	No	No
8	Confederated Salish and Kootenai Tribes of the Flathead Reservation	Yes	Confederated Salish and Kootenai Tribes of the Flathead Reservation, Surface Water Quality Standards and Antidegradation Policy	Waters classified as A-1, B-1, B-2, B-3, C-1, C-2, and C-3 include agricultural and industrial water supply purposes. Also, no increases are allowed above naturally occurring concentrations of sediment, contaminated sediment, settleable solids, oils, or floating solids that create or are likely to create a nuisance or render the waters harmful, detrimental, or injurious to public health, recreation, safety, welfare, livestock, fish, or wildlife.	Aquatic life standards and human health ambient water quality standards for pollutants, including metals - see priority pollutant and non-priority pollutant tables	No	No
8	Ute Mountain Ute Tribe	Yes	Ute Mountain Ute Tribe, Water Quality Standards for Surface Waters of the Ute Mountain Ute Indian Reservation & Supplemental Information	AG designated use code: agriculture, irrigation and/or livestock watering. This use is listed for all waterbodies except for one (which currently has no designated uses) in Table 12.1 Designated Uses for Tribal Waters, Colorado and New Mexico. It is listed as a use for all waterbodies in Table 12.2. Designated Uses for Tribal Waters, Utah.	Table 12.6 Standards for Metallic Inorganics and Selenium (µg/L), includes standards primarily for aquatic life and human health, but some agriculture- specific standards are provided in addition to standards for other uses	As (total recoverable): 100 μg/L (30-Day); Cd (total recoverable): 10 μg/L (30-Day); Cr3 (total recoverable): 100 μg/L (30-Day); Cr6 (total recoverable): 100 μg/L (30-Day); Cu (total recoverable): 200 μg/L (30-Day); Hg (total recoverable): 10 μg/L (30-day); Ni (total recoverable): 200 μg/L (30-Day); Pb (total recoverable): 100 μg/L (30-Day); Se (total recoverable): 20 μg/L (30-Day); and Zn (total recoverable): 2,000 μg/L (30-Day)	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards. In note JJ, they cite: Water Quality for Agriculture, 1976, Food and Agriculture Organization of the United Nations.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQ5 Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	Big Pine Indian Reservation Big Pine Paiute Tribe of the Owens Valley	Yes	Water Quality Standards Big Pine Indian Reservation Big Pine Paiute Tribe of the Owens Valley	AGR: Agricultural Supply. Beneficial uses of waters used for farming, horticulture, or ranching, including, but not limited to, irrigation, stock watering, and support of vegetation for range grazing. Waters designated as AGR shall not contain concentrations of chemical constituents in amounts that adversely affect the water for beneficial uses.	Table 4. Maximum Contaminant Levels Inorganic Chemicals for waters designated as MUN (Municipal and Domestic Supply). Beneficial uses of waters used for community, military, or individual water supply systems including, but not limited to, drinking water supply.	No	No
9	Bishop Paiute Tribe	Yes	Bishop Paiute Tribe Water Quality Control Plan	AGR Agricultural Supply Designated uses of waters used for farming, horticulture, or ranching, including, but not limited to, irrigation, stock watering, and support of vegetation for range grazing.	The concentration of toxic pollutants for all surface waters shall not exceed the more stringent of the aquatic life criteria for freshwater or the human health concentration criteria for consumption of water and organisms or for consumption of organisms only in the priority toxic pollutant table of the U.S. EPA National Recommended Water Quality Standards, 2002, or the most recent version. Waters designated as MUN shall not contain concentrations of chemical constituents in excess of the maximum contaminant level (MCL) specified in the California Department of Health Services (DHS) MCLs. Waters designated as AGR shall not contain concentrations of chemical constituents in amounts that adversely affect designated uses (i.e., agricultural purposes). Waters shall not contain concentrations of chemical constituents in amounts that adversely affect designated uses.	It references various sources but does not list specific Ag WQS for metals	References to Agriculture or AGR designations: In determining compliance with standards including references to the AGR designated Use, the Tribe will refer to water quality goals and recommendations from sources such as Natural Resources Conservation Service Irrigation - Handbooks and Manuals - National Engineering Handbook Part 652 - Irrigation Guide (210-vi-NEH, September 1997) and Water Quality for Agriculture, R.S. Ayers and D.W. Wescott, 1989.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQ5 Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	Big Pine Indian Reservation, Big Pine Paiute Tribe of the Owens Valley	Yes	Water Quality Standards, Big Pine Indian Reservation, Big Pine Paiute Tribe of the Owens Valley	AGR AgricnItural Supply. Beneficial uses of waters used for farming, horticulture, or ranching, including, but not limited to, irrigation, stock watering, and support of vegetation for range grazing.	Waters designated as MUN shall not contain concentrations of chemical constituents in excess of the maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL) based upon drinking water standards specified in the following provisions: Table 4 (Inorganic Chemicals),Waters designated as AGR shall not contain concentrations of chemical constituents in amounts that adversely affect the water for beneficial uses.	No	No
9	Gila River Indian Community	No	Decision Document for the U.S. Environmental Protection Agency's Approval of the Gila River Indian Community's Application				
9	Havasupai Tribe	No	EPA website (https://www.epa.gov/wqs- tech/epa-actions-tribal- water-quality-standards- and-contacts)				

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	Hoopa Valley Tribe	Yes	Hoopa Valley Tribe, Water Quality Control Plan, Hoopa Valley Indian Reservation	Use Designation: (B) Agricultural Supply (AGR) includes crop, orchard and pasture irrigation, stock watering, support of vegetation for range grazing and all uses in support of farming and ranching operations.	Toxic substances shall not be introduced into waters within the boundaries of the Hoopa Valley Indian Reservation. Numeric criteria concentrations, which have the potential to either singularly or cumulatively adversely, affect beneficial water uses, cause acute or chronic toxicity to the most sensitive biota, or adversely affect public health. Additional standards for toxins that cause adverse effects from bioaccumulation are listed in Appendix F (this appendix consists of aquatic life and human health criteria for metals and other contaminants)	No	No
9	Hopi Tribe	Yes	Hopi Water Quality Standards Prepared by The Hopi Tribe Water Resources Program	G. Agricultural Irrigation (AgI) and Agricultural Livestock Watering (AgL). Agricultural irrigation means the use of surface waters for irrigation of crops. Agricultural livestock watering means the use of surface waters as a supply for water consumption by livestock.	Standards specific to the uses are presented in Appendix A.	Agl: - Al: 5.0 mg/L, dissolved; Co: 0.05 mg/L, dissolved; Li: 2.5 mg/L, dissolved; Wi: 0.01 mg/L, dissolved; Wi: 0.1 mg/L, dissolved; Wi: 0.1 mg/L, dissolved; As: 2000 μg/L, total recoverable; Cd: 50 μg/L; Cr: 1000 μg/L, total recoverable; Pb: 10,000 μg/L, total recoverable; Mn: 10,000 μg/L; Se: 20 μg/L, total recoverable; V: 100 μg/L; Zn: 10,000 μg/L. AgL: Al: 5.0 mg/L, dissolved; Co: 1.0 mg/L, dissolved; V: 0.1 mg/L; As: 200 μg/L, total recoverable; Cd: 50 μg/L; Cr: 1000 μg/L, total; Cu: 500 μg/L, total recoverable; Pb: 100 μg/L, total recoverable; Pb: 100 μg/L, total recoverable; Pb: 100 μg/L, total recoverable; V: 100 μg/L, total recoverable	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards. Note that irrigation standards listed match the NAS & NAE 1972 20-year ones.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQ5 Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	Hualapai Tribe	Yes	Hualapai Environmental Review Code, Subtitle I. Water Resources and Wetlands, Part I. Water Resources Ordinance	A. The purposes of this Ordinance are as follows: 5. To protect the health and welfare of the Hualapai people by ensuring that water is safe for recreation, drinking, domestic, and agricultural purposes. B. "Agricultural irrigation" or "Agl" means the use of a surface water for the irrigation of crops. C. "Agricultural use/livestock watering" or "AgL" means the use of a surface water as a supply of water for irrigation and livestock watering A. Designated uses of Tribal waters may include one or more of the following: 9. Agricultural irrigation, 10. Agricultural use/Livestock watering	Appendix A: Table 1. Human Health and Agricultural Designated Use Numeric Water Quality Standards	Cd: 50 µg/L (total recoverable) for both AgI and AgL; Cr (total): 1,000 µg/L for both AgI and AgL; Cu: 5,000 µg/L (total recoverable) for AgI and 500 µg/L (total recoverable) for AgI, Pb: 10,000 µg/L (total recoverable) for AgI and 100 µg/L for AgI; Mn: 10,000 µg/L for AgI; Hg: 10 µg/L (total recoverable) for AgI; Se: 20 µg/L (total recoverable) for AgI and 50 µg/L (total recoverable) for AgI and 50 µg/L (total recoverable) for AgI; and Zn: 10,000 µg/L (total recoverable) for AgI and 25,000 µg/L (total recoverable) for AgI.	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards. Note that irrigation standards listed match the NAS & NAE 1972 20-year ones.
9	Lac du Flambeau Tribe	Yes	Lac du Flambeau Water Quality Standards	104.A: (4) Wild Rice. Supporting wild rice habitat for sustainable growth and consumption. (5) Water Supply. Supports the use of water for industrial, agricultural, or aquaculture purposes.	Aquatic life standards criteria and human health standards for metals and other contaminants are provided in Tables 2 and 3	No	No

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQ5 Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	Navajo Nation	Yes	Navajo Nation Surface Water Quality Standards 2007	103 Purpose: The purpose of these surface water quality standards is to protect, maintain, and improve the quality of Navajo Nation surface waters for public and private drinking water supplies; to promote the habitation, growth, and propagation of native and other desirable aquatic plant and animal life; to protect existing, and future, domestic, cultural, agricultural, recreational and industrial uses; and to protect any other existing and future beneficial uses of Navajo Nation surface waters. "Agricultural Water Supply (AgWS)" means the use of the water for the irrigation of crops that could be used for human consumption. "Livestock Watering (LW)" means water used by livestock for consumption (ingestion).	Table 206.1. Numeric Surface Water Quality Standards (including metals) for aquatic life, human health, agricultural water supply livestock watering, and other uses	Agricultural Water Supply (total): As: 2000 μg/L; Cd: 50 μg/L; Cr: 1000 μg/L; Co: 50 μg/L; Cu: 200 μg/L (dissolved); Pb: 10000 μg/L; Mo: 1000 μg/L (dissolved); Se: 20 μg/L; V: 100 μg/L (dissolved); Zn: 10000 μg/L Livestock Watering (total): As: 200 μg/L; Cd: 50 μg/L; Cr: 1000 μg/L; Co: 1000 μg/L; Cu: 500 μg/L; Co: 50 μg/L	No, but the ones listed match the NAS & NAE 1972 criteria, except for Mo; not all of the NAS & NAE 1972 criteria are listed in these standards. Note that some irrigation standards listed match the NAS & NAE 1972 20-year ones.
9	Pyramid Lake Paiute Tribe	Yes	Pyramid Lake Paiute Tribe Water Quality Control Plan	IRRG - Irrigation. Beneficial uses of water for the purpose of irrigation including, but not limited to, farming, horticulture, range and range vegetation (TR/PS/SWB). LSWT - Livestock Watering. For the purpose of watering range and farm livestock (TR/PS/SWB). Waters designated as IRRG or LSWT shall not contain concentrations of chemical constituents in amounts that adversely affect their beneficial uses for agricultural purposes.	Table II. 4 Numeric Standards of Water Quality - Additional Standards Which Apply to Either Pyramid Lake or the Truckee River†	Al: 5000 µg/L for both IRRG and LSWT; Co: 50 µg/L for IRRG and 5000 µg/L for LSWT ; Fe: 5000 µg/L for IRRG; Mn: 200 µg/L for IRRG; Mo: 10 µg/L for IRRG; V: 100 µg/L for IRRG.	No, but the ones listed match the NAS & NAE 1972 criteria; not all of the NAS & NAE 1972 criteria are listed in these standards. Note that the livestock standards for Co listed in NAS & NAE 1972 is 1 mg/L (or 1,000 µg/L). References National Academy of Sciences – 1972.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
9	Twenty-nine Palms Band of Mission Indians	Yes	Twenty-nine Palms Band of Mission Indians Tribal Water Quality Standards	agricultural (AGR) and wildlife and livestock habitat (WILD) designated uses Uses of water include pasture and crop irrigation, stock watering, horticulture, and support of vegetation for range grazing, as well as other miscellaneous uses in support of farming and ranching. Uses of water include those that support terrestrial ecosystems including, but not limited to, the preservation and enhancement of terrestrial habitats, vegetation, wildlife, livestock, and the water and food sources.	Tribal waters shall not contain concentrations of chemical constituents in excess of the limits specified in the U.S. EPA 2002 National Recommended Water Quality Criteria (See Priority Toxic Pollutants Table in Appendix A) with the exception of Arsenic, which shall not exceed the National Drinking Water Standard of 10 µg/L.	No	No
9	White Mountain Apache Tribe of the Fort Apache Indian Reservation	Yes	Water Quality Protection Ordinance, White Mountain Apache Tribe of the Fort Apache Indian Reservation	Designated uses include irrigation and livestock and wildlife	Section 3.6 - Designated Uses and Specific Standards lists specific standards for tribal designated uses	Irrigation (dissolved): Al: 5.0 mg/L; Cd: 0.01 mg/L; Cr: 0.10 mg/L; Co: 0.05 mg/L; Cu: 0.20 mg/L; Pb: 5.0 mg/L; Mo: 0.01 mg/L; Se: 0.13 mg/L; V: 0.1 mg/L; Zn: 2.0 Livestock and Wildlife (dissolved): Al: 5.0 mg/L; Cd: 0.05 mg/L; Cr: 1.0 mg/L; Co: 1.0 mg/L; Co: 1.0 mg/L; Co: 1.0 mg/L; Co: 0.01 mg/L; Co: 0.02 mg/L; V: 0.1 mg/L; Zn: 25.0 mg/L;	No, but the ones listed match the NAS & NAE 1972 criteria, except for Se; not all of the NAS & NAE 1972 criteria are listed in these standards.

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
10	Colville Confederated Tribes Indian Reservation	Yes	40 CFR § 131.35	(1) Class I (Extraordinary)—(i) Designated uses. The designated uses include, but are not limited to, the following: (A) Water supply (domestic, industrial, agricultural) (2) Class II (Excellent)—(i) Designated uses. The designated uses include but are not limited to, the following: (A) Water supply (domestic, industrial, agricultural). (3) Class III (Good)—(i) Designated uses. The designated uses include but are not limited to, the following: (A) Water supply (industrial, agricultural).	Toxic, radioactive, nonconventional, or deleterious material concentrations shall be less than those of public health significance, or which may cause acute or chronic toxic conditions to the aquatic biota, or which may adversely affect designated water uses	No	No
10	Confederated Tribes of the Chehalis Reservation	Yes	Confederated Tribes of the Chehalis Reservation Surface Water Quality Standards	Class AA (extraordinary), (a) General Characteristic. Water quality of this class shall markedly and uniformly exceed the requirements for all or substantially all uses. Class A (excellent), (a) General Characteristic. Water quality of this class shall meet or exceed the requirements for all or substantially all uses. Class B (good), (a) General Characteristic. Water quality of this class shall meet or exceed the requirements for most uses. (b) Characteristic uses. Characteristic uses shall include but not be limited to the following: (i) Water supply (domestic, industrial, agricultural)	Toxic, radioactive, or deleterious material concentrations shall be below those which have the potential either singularly or cumulatively to adversely affect characteristic water uses, cause acute or chronic conditions to the most sensitive biota dependent upon those waters, or adversely affect public health, as determined by the Department. Aquatic life and human health standards for metals and other contaminants are provided in Section 5. Toxic Substances	No	No
10	Confederated Tribes of the Umatilla Indian Reservation	Yes	Confederated Tribes of the Umatilla Indian Reservation, Water Quality Standards, Beneficial Uses, and Treatment Criteria	Designated Use 2 - Agricultural or Farm Water Supply	Table 3 provides water quality standards for toxic pollutants for metals and other contaminants for aquatic life and human health.	No	No

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
10	Confederated Tribes of the Warm Springs Indian Reservation of Oregon	Yes	Confederated Tribes of the Warm Springs Indian Reservation of Oregon Water Quality Standards, Beneficial Uses and Treatment Standards	Designated Use 4 - Irrigation; Designated Use 5 - Livestock watering	Table 3 Water Quality Standards Summary provides water quality standards for metals and other contaminants for aquatic life, human health, and drinking water	No	No
10	Kalispel Indian Reservation	Yes	Water Quality Standards Applicable to Waters within the Kalispel Indian Reservation	Agricultural Water Supply listed as a Designated Use	Table 2. Toxic Substances provides water quality standards for metals and other contaminants for aquatic life and human health	No	No
10	Lummi Indian Reservation	Yes	Water Quality Standards for Surface Waters of the Lummi Indian Reservation	17 LAR 07.030 General Water Use and Standards Classes, (a) Class AA (extraordinary), (1) General characteristic. Water quality of this class shall uniformly exceed the requirements for all or substantially all uses. (b) Class A (excellent), (1) General characteristic. Water quality of this class shall meet or exceed the requirements for all or substantially all uses. (c) Class B (good), (1) General characteristic. Water quality of this class shall meet or exceed the requirements for most uses. (d) Lake class (1) General characteristic. Water quality of this class shall meet or exceed the requirements for all or substantially all uses. (2) Characteristic uses. Characteristic uses shall include, but not be limited to, the following: (A) Water supply (domestic, commercial, municipal, industrial, agricultural).	Table 4. Toxic Substance Standards for Surface Waters of the Lummi Indian Reservation Aquatic Life Standards Human provides water quality standards for metals and other contaminants for aquatic life and human health	No	No

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
10	Makah Tribe Water	Yes	Makah Tribe Water Quality Standards for Surface Waters	The following uses are designated for protection of the fresh surface waters of the Makah Indian Reservation: (1) Characteristic uses. Characteristic uses shall include, but not be limited to the following: (a) Ceremonial and religious; (b) Cultural; (c) Water supply (domestic, industrial, agricultural).	Table A-1. National Recommended Water Quality Standards for Priority Pollutants provides water quality standards for metals and other contaminants for aquatic life and human health	No	No
10	Port Gamble S'Klallam Tribe	Yes	Port Gamble Skallam Tribe Water Quality Standards for Surface Waters	(1) The designated uses for which the fresh surface waters of the Port Gamble S'Klallam Reservation are to be protected include, but are not limited to, the following: (a) Domestic Water Supply. Surface waters which are suitable or intended to become suitable for drinking water supplies. (b) Agricultural Water Supply. Surface waters which are suitable or intended to become suitable for the irrigation of crops or as drinking water for livestock.	Water Quality Standards for Toxic Pollutants table provides water quality standards for metals and other contaminants for aquatic life and human health	Not for metals	No

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
10	Puyallup Tribe	Yes	Water Quality Standards for Surface Waters of the Puyallup Tribe	Section 4. General Water Use and Standards Classes. The following standards shall apply to the various classes of surface waters of the Puyallup Tribe: (1) Class AA (extraordinary). (a) General characteristic. Water quality of this class shall markedly and uniformly exceed the requirements for all or substantially all uses. (2) Class A (excellent). (a) General characteristic. Water quality of this class shall meet or exceed the requirements for all or substantially all uses. (3) Class B (good). (a) General characteristic. Water quality of this class shall meet or exceed the requirements for most uses. (5) Lake class. (a) General characteristic. Water quality of this class shall meet or exceed the requirements for all or substantially all uses. (b) Characteristic uses. Characteristic uses shall include, but not be limited to, the following: (i) Water supply (domestic, industrial, agricultural).	A water quality standards table for aquatic life and a water quality table for human health are provided; they contain standards for metals and other contaminants.	No	No
10	Spokane Tribe of Indians	Yes	Spokane Tribe of Indians Surface Water Quality Standards	(1) Class AA (Extraordinary), (a) General characteristics. Water quality of this class shall markedly and uniformly exceed the requirements for all or substantially all designated uses. (2) Class A (Excellent), (a) General characteristics. Water quality of this class shall meet or exceed the requirements for all or substantially all designated uses. (3) Lake Class, (a) General characteristics. Water quality of this class shall meet or exceed the requirements for all or substantially all designated uses, particularly cultural, fish and shellfish, and domestic water supply uses. (b) Designated uses. Designated uses shall include, but not be limited to, the following: (iii) Water supply (domestic, industrial, agricultural)	A water quality standards table for aquatic life and a water quality table for human health are provided; they contain standards for metals and other contaminants.	No	No

Table A-2 (continued).

EPA Region	Tribe	Has WQS?	Source	Does Tribe Have Standards for Protection of Agriculture?	Overarching General WQS Relevant to Metals?	Specific Agricultural WQS for Metals?	Methodology on How Agricultural WQS Developed?
10	Coeur d'Alene Tribe	Yes	Water Quality Standards for Approved Surface Waters of the Coeur D'Alene Tribe and Technical Support Document for Action on the Water Quality Standards for Approved Surface Waters of the Coeur d'Alene Tribe	(2) Agricultural Water Supply. Surface waters which are suitable or intended to become suitable for the irrigation of crops or as drinking water for livestock.	A water quality standards table for aquatic life and human health is provided; they contain standards for metals and other contaminants.	No	No

Note: Tribes with water quality standards identified on U.S. EPA's website (https://www.epa.gov/wqs-tech/epa-actions-tribal-water-quality-standards-and-contacts)

Table A-3. Livestock Numeric Standards from U.S. EPA and Other Sources Cited in State and Tribal Water Quality Standards.

Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Ayers and Westcot 1985 (Adapted from NAS 1972)	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Looper et al. 2002 Oklahoma Upper Limits for Cattle	Hicks 2002 - Washington State Dept of Ecology (cites Univ of California 1974)	Raisbeck, et al. 2007
Aluminum	5 mg/L			5 mg/L	5.0 mg/L	5 mg/L	0.50 ppm	5,000 μg/L	
Arsenic	0.2 mg/L	0.05 mg/L		0.2 mg/L	0.2 mg/L	0.01 mg/L	0.05 ppm	200 μg/L	1 mg/L short (days-weeks exposure); 1 mg/L chronic (months) exposure
Barium						10 mg/L	10.0 ppm		
Beryllium				No data	0.1 mg/L (criteria for aquatic life used)	No data			
Cadmium	50 μg/L	0.01 mg/L		0.05 mg/L	0.05 mg/L	0.05 mg/L	0.005 ppm	50 μg/L	
Chromium	1.0 mg/L	0.05 mg/L as hexavalent chromium		1.0 mg/L	1.0 mg/L	1 mg/L	0.10 ppm	1000 μg/L	
Cobalt	1.0 mg/L			1.0 mg/L	1.0 mg/L	1 mg/L	1.0 ppm	1000 μg/L	W.24
Copper	0.5 mg/L			0.5 mg/L	0.5 mg/L	0.5 mg/L (dependent on Mo and sulfate)	1.0 ppm	500 μg/L	
Iron	N/A, but a few ppm of iron can cause clogging of lines to stock watering equipment or an undesirable staining and deposit on the equipment itself			No data	Not needed	over 0.3 mg/L may affect taste	2.0 ppm		
Lead	0.1 mg/L	0.05 mg/L		0.1 mg/L	0.1 mg/L (criteria for aquatic life used)	0.1 mg/L	0.015 ppm	100 μg/L	
Lithium		A-10-10			No. do no				

Table A-3 (continued).

	Sources Cited in State and Tribal Water Quality Standards										
Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Ayers and Westcot 1985 (Adapted from NAS 1972)	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Looper et al. 2002 Oklahoma Upper Limits for Cattle	Hicks 2002 - Washington State Dept of Ecology (cites Univ of California 1974)	Raisbeck, et al. 2007		
Magnesium					< 250 mg/L for poultry and swine; 250 mg/L for horses, cows (lactating), ewes with lambs; 400 mg/L for beef cattle; 5000 mg/L for adult sheep on dry feed	> 125 mg/L					
Manganese	A few mg/L			No data	0.05 mg/L (human drinking water value)	>0.05 mg/L may affect taste	0.05 ppm				
Mercury	10 μg/L; this limit provides an adequate margin of safety to humans who will subsequently not be exposed to as much as 0.5 ppm of mercury through the consumption of animal tissue.		0.05 μg/L	0.01 mg/L	0.01 mg/L	0.01 mg/L	0.01 ppm	10 μg/L			
Molybdenum				No data		No data		500 μg/L	0.3 mg/L short (days-weeks exposure); 0.3 mg/L chronic (months) exposure		
Nickel							0.25 ppm				

Table A-3 (continued).

	Sources Cited in State and Tribal Water Quality Standards													
Metal	Metal NAS & NAE FWPCA 1972 1968		EPA 1976	Westrot (Adapted		Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Tech Note (Cites Oklahoma Upper		Raisbeck, et al. 2007					
Selenium	0.05 mg/L	0.01 mg/L		0.05 mg/L	0.05 mg/L	0.05 mg/L	0.05 ppm	50 μg/L	0.1 short (days-weeks exposure); 0.1 mg/L chronic (months) exposure					
Vanadium	0.1 mg/L			0.10 mg/L	0.10 mg/L	0.10 mg/L	0.10 ppm	100 μg/L						
Zinc	25 mg/L			24 mg/L	24.0 mg/L	25 mg/L	5.0 ppm	25,000 μg/L						

Missing reference: University of California. 1974. Guidelines for Interpretation of Water Quality for Agriculture. University of California, Committee of Consultants. Farm and Home Advisors Office. Ventura, California.

Table A-4. Crop Irrigation Numeric Standards from U.S. EPA and Other Sources Cited in State and Tribal Water Quality Standards

	Sources Cited in State and Tribal Water Quality Standards												
Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Ayers and Westcot 1985 (Adapted from NAS 1972 and Pratt 1972)	Fipps 2003 Texas A&M (cites Rowe and Abel- Magid 1995)	California EPA 2000 (cites Ayers and Westcot 1985 as the primary source)	Colorado Department of Public Health and Environment Reg. No. 31 (2018)	Hicks 2002 - Washington State Dept of Ecology (cites NAS & NAE 1972)			
Aluminum	5.0 mg/L - continuous use on all soils; 20 mg/L - use on fine textured neutral to alkaline soils over a period of 20 years.	1.0 mg/L for water used continuously on all soils and 20.0 mg/L for short-term use on fine textured soils only		5.0 mg/L for waters continuously used on soils; 20 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	5 mg/L for water used continuously on all soils; 20 mg/L for up to 20 years on fine- textured soils of pH 6. to 8.5	5.0 mg/L	5.0 mg/L long- term; 20 mg/L short-term	5.0 mg/L		5000 μg/L			
Arsenic	0.10 mg/L for continuous use on all soils; 2 mg/L for use up to 20 years on fine textured neutral to alkaline soils	1.0 mg/L for water used continuously on all soils and 10.0 mg/L for short-term use on fine textured soils	0.10 mg/L for continuous use on all soils	0.1 mg/L for waters continuously used on soils; 2.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.1 mg/L for water used continuously on all soils; 2.0 mg/L for up to 20 years on finetextured soils of pH 6. to 8.5	0.10 mg/L	0.10 mg/L long- term; 2.0 mg/L short-term	0.10 mg/L	100 μg/L (cites U.S. EPA 1976)	100 μg/L			
Barium													
Beryllium	0.10 mg/L for continuous use on all soils; 0.50 mg/L for use on neutral to alkaline fine textured soils for a 20-year period.	0.5 mg/L for water used continuously on all soils and 1.0 mg/L for short- term use on fine textured soils only	0.10 mg/L for continuous use on all soils; 0.50 mg/L for use on neutral to alkaline fine textured soils for a 20-year period.	0.1 mg/L for waters continuously used on soils; 0.5 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.1 mg/L for water used continuously on all soils; 0.5 mg/L for up to 20 years on finetextured soils of pH 6. to 8.5	0.10 mg/L	0.10 mg/L long- term; 0.5 mg/L short-term	0.10 mg/L	100 μg/L (cites U.S. EPA 1972,1976)	100 μg/L			

	Sources Cited in State and Tribal Water Quality Standards											
Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Ayers and Westcot 1985 (Adapted from NAS 1972 and Pratt 1972)	Fipps 2003 Texas A&M (cites Rowe and Abel- Magid 1995)	California EPA 2000 (cites Ayers and Westcot 1985 as the primary source)	Colorado Department of Public Health and Environment Reg. No. 31 (2018)	Hicks 2002 - Washington State Dept of Ecology (cites NAS & NAE 1972)		
Cadmium	0.010 mg/L for continuous use on all soils; 0.050 mg/L on neutral and alkaline fine textured soils for a 20-year period	0.005 mg/L for water used continuously on all soils and 0.05 mg/L for short-term use on fine textured soils		0.01 mg/L for waters continuously used on soils; 0.05 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.01 mg/L for water used continuously on all soils; 0.05 mg/L for up to 20 years on fine-textured soils of pH 6. to 8.5	0.01 mg/L	0.01 mg/L long- term; 0.05 mg/L short- term	0.01 mg/L	10 μg/L (cites U.S. EPA 1972)	10 μg/L		
Chromium	0.1 mg/L is recommended for continuous use on all soils; 1.0 mg/L on neutral and alkaline fine textured soils for a 20-year period	5.0 mg/L for water used continuously on all soils and 20.0 mg/L for short-term use on fine textured soils only		0.1 mg/L for waters continuously used on soils; 1.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.1 mg/L for water used continuously on all soils; 1 mg/L for up to 20 years on fine-textured soils of pH 6. to 8.5	0.10 mg/L	0.1 mg/L long- term; 1.0 mg/L short-term	0.10 mg/L	100 μg/L (cites U.S. EPA 1972) for Cr VI	100 μg/L		
Cobalt	0.050 mg/L for continuous use on all soils; 5.0 mg/L for neutral and alkaline finetextured soils for a 20-year period.	0.2 mg/L for water used continuously on all soils and 10.0 mg/L for short-term use on fine textured soils		0.05 mg/L for waters continuously used on soils; 5.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.05 mg/L for water used continuously on all soils; 5 mg/L for up to 20 years on fine-textured soils of pH 6. to 8.5	0.05 mg/L	0.05 mg/L long- term; 5.0 mg/L short-term	0.05 mg/L		50 μg/L		

	Sources Cited in State and Tribal Water Quality Standards											
Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Ayers and Westcot 1985 (Adapted from NAS 1972 and Pratt 1972)	Fipps 2003 Texas A&M (cites Rowe and Abel- Magid 1995)	California EPA 2000 (cites Ayers and Westcot 1985 as the primary source)	Colorado Department of Public Health and Environment Reg. No. 31 (2018)	Hicks 2002 - Washington State Dept of Ecology (cites NAS & NAE 1972)		
Copper	0.20 mg/L copper is recommended for continuous use on all soils; 5.0 mg/L is recommended for neutral and alkaline fine textured soils for use over a 20- year period	0.2 mg/L for water used continuously on all soils and 5.0 mg/L for short- term use on fine textured soils only		0.2 mg/L for waters continuously used on soils; 5.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.2 mg/L for water used continuously on all soils; 5 mg/L for up to 20 years on fine-textured soils of pH 6. to 8.5	0.20 mg/L	0.2 mg/L long- term; 5.0 mg/L short-term	0.20 mg/L	200 μg/L (cites U.S. EPA 1972)	200 μg/L		
Iron	5.0 mg/L - continuous use on all soils; 20 mg/L - neutral to alkaline soils for a 20-year period. The use of waters with large concentrations of suspended freshly precipitated iron oxides and hydroxides is not recommended, because these materials also increase the fixation of phosphorous and molybdenum			5.0 mg/L for waters continuously used on soils; 20.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	5 mg/L for water used continuously on all soils; 20 mg/L for up to 20 years on fine- textured soils of pH 6. to 8.5	5.0 mg/L	5.0 mg/L long- term; 20.0 mg/L short- term	5.0 mg/L		5000 μg/L		

	Sources Cited in State and Tribal Water Quality Standards											
Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Ayers and Westcot 1985 (Adapted from NAS 1972 and Pratt 1972)	Fipps 2003 Texas A&M (cites Rowe and Abel- Magid 1995)	California EPA 2000 (cites Ayers and Westcot 1985 as the primary source)	Colorado Department of Public Health and Environment Reg. No. 31 (2018)	Hicks 2002 - Washington State Dept of Ecology (cites NAS & NAE 1972)		
Lead	5.0 mg/L for continuous use on all soils; 10 mg/L for a 20- year period on neutral and alkaline fine textured soils.	5.0 mg/L for water used continuously on all soils and 20.0 mg/L for short-term use on fine textured soils		5.0 mg/L for waters continuously used on soils; 10.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	5 mg/L for water used continuously on all soils; 10 mg/L for up to 20 years on fine- textured soils of pH 6. to 8.5	5.0 mg/L	5.0 mg/L long- term; 10.0 mg/L short- term	5.0 mg/L	100 μg/L (cites U.S. EPA 1972)	5000 μg/L		
Lithium	2.5 mg/L for continuous use on all soils, except for citrus where the recommended maximum concentration is 0.075 mg/L for all soils. For short-term use on fine textured soils the same maximum concentrations are recommended because of lack of inactivation in soils.	5.0 mg/L for water used continuously on all soils and 5.0 mg/L for short- term use on fine textured soils only		2.5 mg/L for waters continuously used on soils; 2.5 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	2.5 mg/L for water used continuously on all soils; 2.5 mg/L for up to 20 years on fine- textured soils of pH 6. to 8.5	2.5 mg/L	2.5 mg/L long- term; 2.5 mg/L short-term			2500 μg/L		
Magnesium												

	Sources Cited in State and Tribal Water Quality Standards												
Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Ayers and Westcot 1985 (Adapted from NAS 1972 and Pratt 1972)	Fipps 2003 Texas A&M (cites Rowe and Abel- Magid 1995)	California EPA 2000 (cites Ayers and Westcot 1985 as the primary source)	Colorado Department of Public Health and Environment Reg. No. 31 (2018)	Hicks 2002 - Washington State Dept of Ecology (cites NAS & NAE 1972)			
Manganese	0.20 mg/L for continued use on all soils; 10 mg/L for use up to 20 years on neutral and alkaline fine textured soils. Concentrations for continued use can be increased with alkaline or calcareous soils, and also with crops that have higher tolerance levels.	2.0 mg/L for water used continuously on all soils and 20.0 mg/L for short-term use on fine textured soils only		0.2 mg/L for waters continuously used on soils; 10.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.2 mg/L for water used continuously on all soils; 10 mg/L for up to 20 years on finetextured soils of pH 6. to 8.5	0.20 mg/L	0.2 mg/L long- term; 10.0 mg/L short- term	0.20 mg/L	200 μg/L (cites U.S. EPA 1972)	200 μg/L			
Mercury													
Molybdenum	0.010 mg/L – continued use on soils based on animal toxicities from forage. 0.050 mg/L - short term use on soils that react with this element	0.005 mg/L for water used continuously on all soils and 0.05 mg/L for short-term use on fine textured soils only		0.01 mg/L for waters continuously used on soils; 0.05 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5 - for acid fine textured soils with relatively high iron oxide	0.01 mg/L for water used continuously on all soils; 0.05 mg/L for up to 20 years on fine-textured soils of pH 6. to 8.5	0.01 mg/L	0.01 mg/L long- term; 0.05 mg/L short- term	0.01 mg/L	300 µg/L (cites Raisbeck et al. 2007 - intended to protect livestock from effects of molybdenosis)	10 μg/L			

Table A-4 (continued).

	Sources Cited in State and Tribal Water Quality Standards										
Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Ayers and Westcot 1985 (Adapted from NAS 1972 and Pratt 1972)	Fipps 2003 Texas A&M (cites Rowe and Abel- Magid 1995)	California EPA 2000 (cites Ayers and Westcot 1985 as the primary source)	Colorado Department of Public Health and Environment Reg. No. 31 (2018)	Hicks 2002 - Washington State Dept of Ecology (cites NAS & NAE 1972)	
Nickel	0.20 mg/L for continued uses on all soils; 2.0 mg/L for neutral fine textured soils for a period up to 20 years.	0.5 mg/L for water used continuously on all soils and 2.0 mg/L for short-term use on fine textured soils only	Concentrations of nickel at or below 100 µg/L should not be harmful to irrigated plants or marine and freshwater aquatic organisms	0.2 mg/L for waters continuously used on soils; 2.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.2 mg/L for water used continuously on all soils; 2 mg/L for up to 20 years on fine-textured soils of pH 6. to 8.5	0.20 mg/L	0.2 mg/L long- term; 2.0 mg/L short-term	0.20 mg/L		200 μg/L	
Selenium	With the low levels of selenium required to produce toxic levels in forages, the recommended maximum concentration in irrigation waters is 0.02 mg/L for continuous use on all soils. The same recommended maximum concentration should be used on neutral and alkaline fine textured soils until greater infomraiton is obtained on soil reactions.	0.05 mg/L for water used continuously on all soils and 0.05 mg/L for short-term use on fine textured soils only		0.02 mg/L for waters continuously used on soils; 0.02 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.02 mg/L for water used continuously on all soils; 0.02 mg/L for up to 20 years on fine-textured soils of pH 6. to 8.5	0.02 mg/L	0.02 mg/L long- term; 0.02 mg/L short- term	0.02 mg/L	20 μg/L (cites U.S. EPA 1972 and Parmetrix 1976)	20 μg/L	

Table A-4 (continued).

	Sources Cited in State and Tribal Water Quality Standards											
Metal	NAS & NAE 1972	FWPCA 1968	EPA 1976	Ayers and Westcot 1976	Pick 2011 - USDA Tech Note (Cites NAS & NAE 1972)	Ayers and Westcot 1985 (Adapted from NAS 1972 and Pratt 1972)	Fipps 2003 Texas A&M (cites Rowe and Abel- Magid 1995)	California EPA 2000 (cites Ayers and Westcot 1985 as the primary source)	Colorado Department of Public Health and Environment Reg. No. 31 (2018)	Hicks 2002 - Washington State Dept of Ecology (cites NAS & NAE 1972)		
Vanadium	0.10 mg/L - continued use on all soils. 1.0 mg/L - 20-year period on neutral and alkaline fine textured soils.	10.0 mg/L for water used continuously on all soils and 10.0 mg/L for short-term use on fine textured soils only		0.1 mg/L for waters continuously used on soils; 1.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	0.1 mg/L for water used continuously on all soils; 1 mg/L for up to 20 years on fine-textured soils of pH 6. to 8.5	0.10 mg/L	0.1 mg/L long- term; 1.0 mg/L short-term	0.10 mg/L		100 μg/L		
Zinc	2.0 mg/L for continuous use on all soils, assuming adequate use of liming materials to keep pH >6 10 mg/L for a 20-year period on netural and alkaline soils; on fine textured calcareous soils and on organic soils, the concentrations can exceed this limit by a factor of two or three with low probability of toxicities in a 20-year period	5.0 mg/L for water used continuously on all soils and 10.0 mg/L for short-term use on fine textured soils only		2.0 mg/L for waters continuously used on soils; 10.0 mg/L for use up to 20 years on fine textured soils of pH 6.0 to 8.5	2.0 mg/L for water used continuously on all soils; 10 mg/L for up to 20 years on fine- textured soils of pH 6. to 8.5	2.0 mg/L	2.0 mg/L long- term; 10.0 mg/L short- term	2.0 mg/L	2000 μg/L (cites U.S. EPA 1972)	2000 μg/L		

Missing references:

Pratt, P.F. 1972. Quality criteria for trace elements in irrigation waters. Calif. Agric. Expt. Sta. 46p.

Source: Rowe, D.R. and L.M. Abdel-Magid. 1995. Handbook of Wastewater Reclamation and Reuse. CRC Press Inc. 550 pp (it looks like they used U.S. EPA's standards, so I'm not sure it's necessary to find)

Table A-5. San Juan River Upstream (New Mexico) Reach fillet tissue concentrations (mg/Kg, wet weight)

Sample ID		Upstr	ream Compo	osite 1	Upstr	eam Comp	osite 2	Upstr	eam Compo	osite 3	Upstr	eam Comp	MDL 1.9 0.034 0.021 0.049 0.025 0.011 8.3			
CAS	Analyte	Units	VALUE	RL	MDL	VALUE	RL	MDL	VALUE	RL	MDL	VALUE	RL	MDL		
7429-90-5	Aluminum	mg/Kg	ND	2.9	1.8	ND	3.2	1.9	ND	3.2	2	ND	3.1	1.9		
7440-36-0	Antimony	mg/Kg	ND	0.19	0.032	ND	0.21	0.034	ND	0.22	0.035	ND	0.21	0.034		
7440-38-2	Arsenic	mg/Kg	ND	0.097	0.02	ND	0.11	0.021	ND	0.11	0.022	ND	0.1	0.021		
7440-39-3	Barium	mg/Kg	ND	0.97	0.046	ND	1.1	0.05	ND	1.1	0.051	ND	1	0.049		
7440-41-7	Beryllium	mg/Kg	ND	0.097	0.024	ND	0.11	0.026	ND	0.11	0.026	ND	0.1	0.025		
7440-43-9	Cadmium	mg/Kg	ND	0.097	0.01	ND	0.11	0.011	ND	0.11	0.011	ND	0.1	0.011		
7440-70-2	Calcium	mg/Kg	ND	49	7.8	ND	53	8.5	ND	54	8.6	ND	52	8.3		
7440-47-3	Chromium	mg/Kg	ND	0.19	0.079	ND	0.21	0.086	ND	0.22	0.088	ND	0.21	0.084		
7440-48-4	Cobalt	mg/Kg	ND	0.049	0.008	ND	0.053	0.0086	ND	0.054	0.0088	ND	0.052	0.0085		
7440-50-8	Copper	mg/Kg	0.25	0.19	0.12	0.32	0.21	0.13	0.44	0.22	0.13	0.36	0.21	0.13		
7439-89-6	Iron	mg/Kg	ND	4.9	3.6	5.3	5.3	3.9	ND	5.4	4	ND	5.2	3.8		
7439-92-1	Lead	mg/Kg	ND	0.097	0.047	ND	0.11	0.051	ND	0.11	0.052	ND	0.1	0.05		
7439-95-4	Magnesium	mg/Kg	220	49	3.2	230	53	3.5	230	54	3.6	230	52	3.4		
7439-96-5	Manganese	mg/Kg	ND	0.49	0.17	ND	0.53	0.18	ND	0.54	0.19	ND	0.52	0.18		
7439-98-7	Molybdenum	mg/Kg	ND	0.49	0.076	ND	0.53	0.083	ND	0.54	0.084	ND	0.52	0.081		
7440-02-0	Nickel	mg/Kg	ND	0.097	0.029	ND	0.11	0.031	0.12	0.11	0.032	0.052	0.1	0.03		
9/7/7440	Potassium	mg/Kg	3600	49	5.2	3600	53	5.6	3800	54	5.8	3800	52	5.5		
7782-49-2	Selenium	mg/Kg	ND	0.49	0.12	ND	0.53	0.13	ND	0.54	0.13	ND	0.52	0.13		
7440-22-4	Silver	mg/Kg	ND	0.097	0.013	ND	0.11	0.014	ND	0.11	0.014	ND	0.1	0.014		
7440-23-5	Sodium	mg/Kg	620	49	20	580	53	22	660	54	23	640	52	22		
7440-24-6	Strontium	mg/Kg	ND	0.49	0.033	ND	0.53	0.036	ND	0.54	0.037	ND	0.52	0.035		
7440-28-0	Thallium	mg/Kg	ND	0.097	0.0038	ND	0.11	0.0041	ND	0.11	0.0042	ND	0.1	0.004		
7440-62-2	Vanadium	mg/Kg	ND	0.097	0.055	ND	0.11	0.059	ND	0.11	0.061	ND	0.1	0.058		
7440-66-6	Zinc	mg/Kg	4.3	0.49	0.28	4.5	0.53	0.3	4.3	0.54	0.31	4.6	0.52	0.3		
7439-97-6	Mercury	mg/Kg	0.16	0.034	0.0076	0.15	3	1.8	0.15	0.031	0.0069	0.14	0.034	0.0075		

Note: RL = Reporting Limit; MDL = Method Detection Limit; ND = Not Detected

Table A-6. Table A- 6. San Juan River Upstream (New Mexico) Reach fillet tissue concentrations (mg/Kg, wet weight) (continued)

	Sample ID		Upst	ream Comp	osite 5	Upstr	eam Compo	site 6
CAS	Analyte	Units	VALUE	RL	MDL	VALUE	RL	MDL
7429-90-5	Aluminum	mg/Kg	ND	2.9	1.8	ND	3.1	1.9
7440-36-0	Antimony	mg/Kg	ND	0.2	0.032	ND	0.21	0.034
7440-38-2	Arsenic	mg/Kg	ND	0.098	0.02	ND	0.1	0.021
7440-39-3	Barium	mg/Kg	ND	0.98	0.046	ND	1	0.049
7440-41-7	Beryllium	mg/Kg	ND	0.098	0.024	ND	0.1	0.025
7440-43-9	Cadmium	mg/Kg	ND	0.098	0.01	ND	0.1	0.011
7440-70-2	Calcium	mg/Kg	ND	49	7.9	ND	52	8.4
7440-47-3	Chromium	mg/Kg	ND	0.2	0.08	ND	0.21	0.085
7440-48-4	Cobalt	mg/Kg	ND	0.049	0.008	ND	0.052	0.0085
7440-50-8	Copper	mg/Kg	0.41	0.2	0.12	0.31	0.21	0.13
7439-89-6	Iron	mg/Kg	ND	4.9	3.6	5.6	5.2	3.8
7439-92-1	Lead	mg/Kg	ND	0.098	0.047	ND	0.1	0.05
7439-95-4	Magnesium	mg/Kg	230	49	3.3	230	52	3.5
7439-96-5	Manganese	mg/Kg	ND	0.49	0.17	0.58	0.52	0.18
7439-98-7	Molybdenum	mg/Kg	ND	0.49	0.077	ND	0.52	0.082
7440-02-0	Nickel	mg/Kg	0.088	0.098	0.029	0.28	0.1	0.031
9/7/7440	Potassium	mg/Kg	3600	49	5.2	3700	52	5.6
7782-49-2	Selenium	mg/Kg	ND	0.49	0.12	ND	0.52	0.13
7440-22-4	Silver	mg/Kg	ND	0.098	0.013	ND	0.1	0.014
7440-23-5	Sodium	mg/Kg	610	49	21	700	52	22
7440-24-6	Strontium	mg/Kg	ND	0.49	0.034	ND	0.52	0.036
7440-28-0	Thallium	mg/Kg	ND	0.098	0.0038	ND	0.1	0.0041
7440-62-2	Vanadium	mg/Kg	ND	0.098	0.055	ND	0.1	0.059
7440-66-6	Zinc	mg/Kg	5.1	0.49	0.28	4.7	0.52	0.3
7439-97-6	Mercury	mg/Kg	0.17	0.034	0.0075	0.14	0.037	0.0082

Note: RL = Reporting Limit; MDL = Method Detection Limit; ND = Not Detected

Table A-7. San Juan River Downstream (Utah) Reach fillet tissue

	Sample ID			eam Com	posite 1	Downsti	eam Con	nposite 2	Downsti	ream Con	posite 3	Downsti	ream Con	posite 4
CAS	Analyte	Units	VALUE	RL	MDL	VALUE	RL	MDL	VALUE	RL	MDL	VALUE	RL	MDL
7429-90-5	Aluminum	mg/Kg	ND	3	1.8	ND	3	1.8	ND	3	1.8	ND	3.2	1.9
7440-36-0	Antimony	mg/Kg	ND	0.2	0.032	ND	0.2	0.033	ND	0.2	0.032	ND	0.21	0.035
7440-38-2	Arsenic	mg/Kg	ND	0.099	0.02	ND	0.1	0.02	ND	0.099	0.02	ND	0.11	0.022
7440-39-3	Barium	mg/Kg	ND	0.99	0.047	ND	1	0.047	ND	0.99	0.047	ND	1.1	0.05
7440-41-7	Beryllium	mg/Kg	ND	0.099	0.024	ND	0.1	0.024	ND	0.099	0.024	ND	0.11	0.026
7440-43-9	Cadmium	mg/Kg	ND	0.099	0.01	ND	0.1	0.011	ND	0.099	0.01	ND	0.11	0.011
7440-70-2	Calcium	mg/Kg	ND	50	7.9	ND	50	8	ND	50	7.9	ND	53	8.5
7440-47-3	Chromium	mg/Kg	ND	0.2	0.081	ND	0.2	0.082	ND	0.2	0.081	ND	0.21	0.087
7440-48-4	Cobalt	mg/Kg	ND	0.05	0.0081	ND	0.05	0.0082	ND	0.05	0.0081	ND	0.053	0.0087
7440-50-8	Copper	mg/Kg	0.39	0.2	0.12	0.31	0.2	0.12	0.37	0.2	0.12	0.38	0.21	0.13
7439-89-6	Iron	mg/Kg	7.4	5	3.6	6.2	5	3.7	4.3	5	3.6	ND	5.3	3.9
7439-92-1	Lead	mg/Kg	ND	0.099	0.048	ND	0.1	0.048	ND	0.099	0.048	ND	0.11	0.051
7439-95-4	Magnesium	mg/Kg	310	50	3.3	220	50	3.3	220	50	3.3	250	53	3.5
7439-96-5	Manganese	mg/Kg	ND	0.5	0.17	ND	0.5	0.17	ND	0.5	0.17	ND	0.53	0.19
7439-98-7	Molybdenum	mg/Kg	ND	0.5	0.078	ND	0.5	0.078	ND	0.5	0.078	ND	0.53	0.083
7440-02-0	Nickel	mg/Kg	ND	0.099	0.029	ND	0.1	0.029	ND	0.099	0.029	ND	0.11	0.031
7440-09-7	Potassium	mg/Kg	5000	50	5.3	3600	50	5.4	3800	50	5.3	3800	53	5.7
7782-49-2	Selenium	mg/Kg	ND	0.5	0.12	ND	0.5	0.12	ND	0.5	0.12	ND	0.53	0.13
7440-22-4	Silver	mg/Kg	ND	0.099	0.013	ND	0.1	0.013	ND	0.099	0.013	ND	0.11	0.014
7440-23-5	Sodium	mg/Kg	890	50	21	560	50	21	590	50	21	590	53	22
7440-24-6	Strontium	mg/Kg	ND	0.5	0.034	ND	0.5	0.034	ND	0.5	0.034	ND	0.53	0.037
7440-28-0	Thallium	mg/Kg	ND	0.099	0.0039	ND	0.1	0.0039	ND	0.099	0.0039	ND	0.11	0.0041
7440-62-2	Vanadium	mg/Kg	ND	0.099	0.056	ND	0.1	0.057	ND	0.099	0.056	ND	0.11	0.06
7440-66-6	Zinc	mg/Kg	5.7	0.5	0.29	4.5	0.5	0.29	4.2	0.5	0.29	4	0.53	0.31
7439-97-6	Mercury	mg/Kg	0.19	0.033	0.0074	0.13	0.035	0.0078	0.095	0.034	0.0075	0.16	0.036	0.0081

B. Appendix: Navajo Sediment and Soil Laboratory Toxicity Study

Results of *Hyalella azteca* Sediment Toxicity Tests and *Zea mays, Cucurbita pepo, Medicago sativa,* and *Cucumis melo* Soil Toxicity Tests

Report #BRF/ETF18-012

Prepared by: Tetra Tech, Inc. 10711 Red Run Boulevard, Suite 105 Owings Mills, Maryland 21117 PA DEP NELAC LAB #68-05136

January 22, 2019

SUMMARY

CLIENT: Tetra Tech, Inc.

TEST SITE: San Juan River

TEST MATERIAL: Sediment from 10 locations, plus controls

Soil from 10 locations, plus controls

DATE(S) COLLECTED: Sediments: 29 October – 1 November 2018

Soils: 30 - 31 October 2018

DATE(S) RECEIVED: Sediments: 30 October – 2 November 2018

Soils: 31 October - 1 November 2018

COLLECTED BY: Navajo Nation personnel

CONTROL/DILUTION

WATER/SEDIMENT/SOIL: Moderately Hard Reconstituted Water

Rhode River, MD Sediment

Store-bought organic topsoil

TYPE OF TEST(S): 42 Day Sediment Toxicity using *Hyalella azteca*

Soil Toxicity and Growth Test using Zea mays L., Cucumis melo, Cucurbita

pepo, and Medicago sativa

TEST RESULTS:

Table 1. Summary of *Zea mays L.* survival and growth endpoints for Navajo Nation soils. Shaded cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Tt04097	Control	92	231.1	249.4	142.4	39.4	95.6
Tt04098	Soil-157-01	96	283.1	159.2	260.7	83.9	176.8
Tt04099	Soil-295-01	44	163.9	83.2	150.5	32.5	118.1
Tt04100	Soil-270-01	44	146.3	108.0	153.6	24.5	129.1
Tt04101	Soil-200-01	88	255.4	214.3	198.6	51.6	146.9
Tt04102	Soil-TP-01	92	224.8	169.1	151.5	25.8	125.8
Tt04103	Soil-200-02	80	242.9	244.8	164.7	31.9	132.7
Tt04104	Soil-FR-01	76	239.7	134.4	155.2	17.7	136.8
Tt04105	Soil-AS-01	84	256.4	176.6	197.0	34.7	162.3
Tt04106	Soil-295-02	96	260.5	245.5	168.3	39.6	128.7
Tt04107	Soil-AV-01	92	198.0	96.1	217.7	42.8	174.9

Table 2. Summary of *Cucumis melo* survival and growth endpoints for Navajo Nation soils. Shaded cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Tt04086	Control	96	185.8	114.7	77.5	11.3	66.2
Tt04087	Soil-157-01	68	213.1	71.5	109.9	17.4	92.5
Tt04088	Soil-295-01	88	202.6	100.6	93.0	15.0	77.9
Tt04089	Soil-270-01	28	110.2	64.8	104.8	17.1	125.0
Tt04090	Soil-200-01	96	197.1	135.1	102.0	15.9	86.0
Tt04091	Soil-TP-01	100	197.7	104.9	94.5	14.7	79.9
Tt04092	Soil-200-02	88	209.3	117.3	87.8	12.5	75.2
Tt04093	Soil-FR-01	64	214.6	94.7	104.3	14.3	90.0
Tt04094	Soil-AS-01	84	213.8	98.7	104.6	23.6	80.9
Tt04095	Soil-295-02	92	210.7	130.7	118.8	23.6	95.2
Tt04096	Soil-AV-01	36	157.3	54	159.9	20.7	139.2

Table 3. Summary of *Medicago sativa* survival and growth endpoints for Navajo Nation soils. Shaded cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Tt04108	Control	64	52.4	38.6	7.3	2.6	4.7
Tt04109	Soil-157-01	60	80.1	37.7	8.5	4.1	4.4
Tt04110	Soil-295-01	52	53.3	40.2	5.5	1.3	4.2
Tt04111	Soil-270-01	40	49.2	44.0	3.5	0.9	2.5
Tt04112	Soil-200-01	64	69.7	44.1	7.3	1.8	5.5
Tt04113	Soil-TP-01	60	48.3	41.3	12.0	6.7	5.3
Tt04114	Soil-200-02	80	41.0	68.6	3.6	1.5	2.1
Tt04115	Soil-FR-01	76	72.3	41.2	9.5	3.3	6.3
Tt04116	Soil-AS-01	84	78.5	48.4	4.1	1.2	2.9
Tt04117	Soil-295-02	92	81.2	61.8	5.2	1.6	3.6
Tt04118	Soil-AV-01	64	56.9	47.2	8.4	4.2	4.2

Table 4. Summary of *Cucurbita pepo* survival and growth endpoints for Navajo Nation soils. Shaded cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Tt04075	Control	60	130.1	91.4	31.6	13.2	18.4
Tt04076	Soil-157-01	68	131.2	60.1	37.1	11.4	25.6
Tt04077	Soil-295-01	12	51.4	31	23.5	8.0	15.5
Tt04078	Soil-270-01	0	0	0	0	0	0
Tt04079	Soil-200-01	12	47.2	27.2	9.5	4.1	7.9
Tt04080	Soil-TP-01	88	150.0	69.5	37.9	9.2	28.6
Tt04081	Soil-200-02	56	104.8	56.7	26.7	5.5	21.2
Tt04082	Soil-FR-01	32	69.5	28.1	18.5	10.6	7.9
Tt04083	Soil-AS-01	16	105.6	53.8	28	9.3	18.7
Tt04084	Soil-295-02	56	129.2	81.1	57.4	11.9	45.5
Tt04085	Soil-AV-01	24	94	34.3	29.7	10.2	19.5

Table 5. Summary of *Hyalella azteca* survival, growth and reproduction endpoints for Anacostia River sediments. Marked cells are significantly less than controls (p < 0.05).

Test ID	Location	28 Day Mean % Survival (N = 12)	28 Day Mean % Survival (N = 8)	35 Day Mean % Survival (N = 8)	42 Day Mean % Survival (N = 8)	28 Day Mean Weight of Survivors (mg)	28 Day Mean Individual Weight based on 10 Organisms per Chamber (mg)	42 Day Mean Weight of Survivors (mg)	42 Day Mean Individual Weight based on 10 Organisms per Chamber (mg)	42 Day Average Young/ Female
Tt04050	Controls	84.2	87.5	82.5	81.3	0.30	0.24	0.49	0.40	2.8
Tt04040	02SANJUANR07	90	90	90	88.8	0.70	0.63	0.74	0.66	6.6
Tt04041	02SANJUANR06	86.7	86.3	83.8	82.5	0.55	0.49	0.58	0.48	2.0
Tt04042	10SANJUANR38	56.7	50	47.5	45.0	0.33	0.23	0.71	0.32	5.9
Tt04043	10HOGBACKC43	93.3	88.8	87.5	87.5	0.29	0.30	0.58	0.51	4.1
Tt04044	10SANJUANR26	96.7	98.8	91.3	91.3	0.62	0.57	0.70	0.64	8.6
Tt04045	06CHACORIV04	82.5	96.3	96.3	96.3	0.84	0.46	0.50	0.48	2.3
Tt04046	10HOGBACKC44	89.2	87.5	87.5	90	0.44	0.41	0.67	0.61	4.7
Tt04047	07MANCOSRI01	76.7	73.8	73.8	73.8	0.33	0.27	0.52	0.39	1.7
Tt04048	10FRUCANAL45	89.2	86.3	83.8	83.8	0.83	0.79	0.71	0.60	4.4
Tt04049	10FRUCANAL40	88.3	95.0	90	90	0.65	0.49	0.63	0.57	3.4

MATERIALS AND METHODS

TEST MATERIAL

Navajo Nation personnel collected approximately 1.25 gallons of sediment from each of 10 sampling locations and 2.5 gallons of soil from each of the 10 sampling locations. The samples were transported on ice in plastic buckets to Tetra Tech's Ecological Testing Facility in Owings Mills, Maryland. Upon arrival, the sample identification, collection date and time were recorded on the sample chain-of-custody (COC) sheets (see 'Attachment A - Chain-of-Custody'). The temperature of the samples was recorded on the appropriate COC sheet. All temperatures were within an acceptable range ($< 6^{\circ}$ C).

Soil

Soil samples were collected by Navajo personnel and consisted of various soils farmed. Table 6 summarizes the soils used in this study.

Area	Soil Unit	Unit Name	Sample Label
Upper Fruitland-	As	Apishapa clay	Soil-AS-01
San Juan Area	Tp/Tt	Turley clay loam/Turley clay loam, wet	Soil-TP-01
	Fu/Fr	Fruitland loam/Fruitland sandy loam	Soil-FR-01
Hogback-Lower	200	Tocito silt loam	Soil-200-01
Shiprock			Soil-200-02
	270	Fruitland sandy clay loam	Soil-270-01
	295/290	Mesa sandy clay loam, wet/Mesa clay	Soil-295-01
		loam, wet	Soil-295-02
Cudei	157	Werjo, saline-Werjo loams	Soil-157-01
Utah	AV	Aquic Ustifluvents-Typic Fluvaquents	Soil-AV-01
		association	

Table 6. Summary of soils collected by Navajo Nation personnel and used in soil toxicity evaluations.

Sediment

Sediment samples were collected by Navajo personnel and consisted of various sediments found in the San Juan River, tributaries, and canals in the region. Table 7 summarizes the sediment samples used in this study.

CONTROL/DILUTION WATER

The control/dilution water used for *Hyalella azteca* 42-day sediment toxicity tests was moderately hard reconstituted water. Attachment B (Laboratory Water) contains a summary of the water used for renewing the sediment toxicity tests.

The control sediment used for *Hyalella azteca* 42-day sediment toxicity tests was collected from Rhode River, MD at the Smithsonian Environmental Research Center.

The control soil used for all soil toxicity and growth test was store-bought organic soil from Lowe's.

Table 7. Summary of sediments collected by Navajo Nation personnel and used in sediment toxicity evaluations.

Area	Unit Name	Sample Label
San Juan River	San Juan River at Nenahnezad	10SANJUANR38
River	San Juan River at Area 7 (downstream from Shiprock)	10SANJUANR26
	San Juan River at Four Corners	02SANJUANR06
	San Juan River at Montezuma Creek	02SANJUANR07
Tributaries	Chaco River near mouth	06CHACORIV04
	Mancos River at mouth	07MANCOSRI01
Irrigation Canals	Fruitland Canal at first bridge	10FRUCANAL40
Canais	Fruitland Canal several miles from head gate	10FRUCANAL45
	Hogback Canal between head gate and first waste way	10HOGBACKC43
	Hogback Canal several miles from head gate	10HOGBACKC44

TEST ORGANISMS/AGE

Amphipod (*Hyalella azteca*) test organisms, 7 to 8 days old (all within a 24-hour range in age), were obtained from Aquatic Biosystems (www.aquaticbiosystems.com). All seeds used in soil toxicity and growth tests were purchased by Navajo Nation personnel from the local vendors including the IFA Country Store and local trading post.

TEST METHODS

In the lab, each sample was thoroughly homogenized in its original container to an even color and texture with a stainless-steel spoon. During homogenization and inspection, visible indigenous organisms were removed from the sediment samples. Test protocols followed the standard methods cited below:

- ASTM International. 2006. Standard Test Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. E1706-05. Annual Book of ASTM Standards, Vol. 11.06, Philadelphia, PA.
- ASTM International. 2014. Standard Test Methods for Conducting Terrestrial Plant Toxicity Tests. E1963-09(2014). Annual Book of ASTM Standards, Vol. 11.06, Philadelphia, PA.
- Tetra Tech Protocol. 42-Day Sediment Toxicity Test Using Hyalella azteca. Revised April 2014. (Internal document prepared by Tetra Tech, Inc.)
- Tetra Tech Protocol. Terrestrial Plant Toxicity Using *Lactuca sativa*. Revised April 2018. (Internal document prepared by Tetra Tech, Inc.)
- U.S. Environmental Protection Agency. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates.
 2nd edition. EPA/600/R-99/064. U.S. EPA, ORD, Duluth, MN.

TEST CONDITIONS

Test conditions for the *H. azteca* sediment toxicity tests are described in Table 8. Test conditions for the *Z. mays*, *C. pepo*, *M. sativa*, and *C. melo* soil toxicity tests are described in Table 9.

AERATION OF SEDIMENT TESTS

Dissolved oxygen levels were measured as >2.5 mg/L in all test chambers. No additional aeration was required.

MODIFICATIONS TO PROTOCOLS

None.

CHEMISTRY

Fully-homogenized soil subsamples were sent to ALS Environmental in Kelso, WA for the analysis of total solids (EPA 160.3), acid-volatile sulfides (EPA 821/R-91-100), total organic carbon (EPA 9060), metals (EPA 6020A), and mercury (EPA 7471B).

Fully-homogenized sediment sub-samples were sent to ALS Environmental in Kelso, WA for the analysis of total solids (EPA 160.3), pH (EPA 9045C), particle size (ASTM D422M), metals (EPA 6020A), and mercury (EPA 7471B).

VARIANCES AND COMMENTS ON TESTS

Ammonia only measured at beginning of test due to lack of reagents at end of test. Light intensity only measured at beginning of test for melon.

 Table 8. Summary of Test Conditions for Hyalella azteca 42-Day Whole Sediment Toxicity Test.

	PARAMETER	CONDITIONS
1.	Test type	Whole-sediment toxicity test with renewal of overlying water
2.	Test duration	42 days
		23°C ± 1°C daily mean temperature, 23 ± 3°C instantaneous
3.	Temperature	temperature
4.	Light quality	Wide-spectrum fluorescent lights
5.	Light intensity	~ 500-1000 lux
6.	Photoperiod	16h light, 8h darkness
7.	Test chamber size	300 mL high-form lipless beaker
8.	Sediment volume	100 mL
9.	Overlying water volume	175 mL in the sediment exposure from Day 0 – 28 (175 – 275 mL in the water-only exposure from Day 28 – 42
10.	Renewal of overlying water	2 volume additions/day
11.	Age of test organisms:	7 - 8 days
12.	No. organisms per test chamber	10
		12 (4 for 28-day survival and growth; 8 for 35-day survival and
13.	No. replicate chambers per sample	reproduction and 42-day survival, growth, and reproduction)
14.	No. organisms per sample	120
15.	Feeding regime	Fed 1.0 mL Yeast, Tetramin®, Cerophyll (YTC) daily to each test chamber
16.	Aeration	None
17.	Overlying water	Moderately hard reconstituted water
18.	Overlying water quality	Hardness, alkalinity, conductivity and ammonia at the beginning and end of a sediment exposure (Day 0 and 28). Temperature and dissolved oxygen daily. Conductivity weekly and pH three times per week.
19.	Endpoint	28-day survival and growth; 35-day survival and reproduction; and 42- day survival, growth, reproduction (number of young per female on Day 42)
20.	Sampling and sample holding requirements	Samples used within 8 weeks of receipt. Samples stored in the dark at <6°C.
21.	Sample volume required	One gallon
22.	Test acceptability	Day 28: Minimum mean control survival of 80% and dry weight >0.15 mg. Day 29 – 42: >2 young/female.

 Table 9. Summary of Test Conditions for Terrestrial Plant Germination and Growth Test.

	PARAMETER	CONDITIONS
1.	Test type:	Toxicity
2.	Test duration:	2 times control germination period length rounded to the nearest week or 15 days (70% germination for alfalfa and melon; 75% for corn and squash).
3.	Temperature:	20-30°C; measured continuously in ambient environment
4.	Light quality:	Wide-spectrum fluorescent lights
5.	Light intensity:	~ 100-200 µmol m ⁻² s ⁻¹ (687-1,374 FC)
6.	Photoperiod:	16h light, 8h dark
7.	Test chamber size:	500-mL plastic containers with holes drilled in bottom
8.	Soil volume:	100-300g
11.	Age of test organisms:	Seeds
12.	No. organisms per test chamber	5
13.	No. replicate chambers per site:	5
14.	No. organisms per site:	25
15.	Humidity	30-50%
16.	Watering regiment	Add deionized water as needed
17.	Test chamber cleaning	No cleaning
18.	Physico/Chemical Measurements	Light intensity, soil pH, and soil water holding capacity at the beginning and end of the test. Temperature, humidity, barometric pressure, % germination measured daily. Add deionized water as needed
19.	Endpoint:	Germination percentage, shoot height, root length, dry shoot mass, dry root mass, dry total mass.
20.	Sampling and sample holding requirements	Samples used within 8 weeks of sampling. Samples are stored in the dark at <6°C in sealed containers with minimal air space.
21.	Sample volume required:	500 - 1500g

SEDIMENT TOXICITY TEST RESULTS

OVERLYING WATER PHYSICAL/CHEMICAL RESULTS

Physicochemical parameters measured in the overlying water include alkalinity and hardness (as mg CaCO₃), ammonia, dissolved oxygen, pH, temperature, and conductivity (Table 10). Physicochemical data are provided in Attachment C.

STATISTICAL ANALYSIS

A Duncan's test was used to test significant differences between the controls and the site sediments. Results that were significantly lower than the controls are summarized in Table 11. Significance is defined as a p value <0.05 for an ANOVA where the test result was less than its control. Results that were significantly higher than the control are indicated as such in Attachment D but are not included in Table 11 because they do not suggest sediment toxicity.

HYALELLA AZTECA TEST RESULTS

Overall, only one sediment, 10SANJUAN38, resulted in a significant difference from control with respect to *Hyalella* survival. There were no significant differences from the controls with respect to growth (28-day and 42-day); biomass (28-day and 42-day) or reproduction (42-day average young/female). The analysis of the results of the sediment toxicity tests with *Hyalella* are summarized in Table 11.

SEDIMENT CHEMISTRY RESULTS

Overall, the sediment samples consisted of 54.6-75.5% solids, acid volatile sulfides (AVS) concentrations between non-detect (0.007 μ mole/g) to 0.9 μ mole/g, and total organic carbon (TOC) percentage between 0.2 to 1.25%. Sediment 10SANJUANR38 had the highest concentration of AVS and TOC (Table 12).

The analysis of total metals in the sediments indicated that there were no exceedances of sediment screening values for toxicity (Buchman, 2008) for all sediment samples except manganese in sediment 10SANJUANR38 (Table 12). The results of chemical analysis of the sediments are summarized in Table 12. A correlation evaluation was conducted to determine if the concentration of any of the measured analytes correlated with the observed toxicity. The r value, which is the variable that indicates a correlation, is summarized for each measured analyte and each lethal and sublethal endpoint in Table 13. With respect to correlations, negative r values indicate a negative slope or a decreasing trend, while positive r values indicate a positive slope or increasing trend.

The percentage of TOC measured in the sediment samples had a significant degree (p < 0.05) of correlation with the 28-d, 35-d, and 42-d survivals observed. The negative r values associated with the measured TOC percentage and survival indicates that as the measured percentage of TOC decreased the survival percentage increased (Figure 1 in Attachment D). The only analyte that had a significant (p < 0.05) correlation with a sublethal endpoint was the measure of acid volatile sulfide concentration and the weight of the 42-d survivors (Figure 1 in Attachment D). Thus, as the measured concentration of AVS increased so did the weight of the survivors at the end of the test.

Table 10. Summary of water quality data for *Hyalella azteca* 42-day sediment toxicity test (includes water quality before organisms were loaded).

Water Chemistry analysis (range)											
Test ID	Location	Cond. (μS)	D.O. (mg/L)	рН	Temp. (°C) Instantaneous	Alkalinity (mg/L as CaCO₃)	Hardness (mg/L as CaCO₃))	Ammonia (mg/L)			
Tt04050	Controls	315 – 1015	5.4 – 9.8	7.0 – 8.1	21.7 – 24.8	60	106 – 146	0.26			
Tt04040	02SANJUANR07	313 - 444	6.5 – 10.0	6.7 – 8.4	21.4 – 24.5	98 – 108	136 – 148	0.06			
Tt04041	02SANJUANR06	310 – 612	5.9 – 10.1	7.2 – 8.2	21.4 – 24.5	88 – 146	130 – 138	0.24			
Tt04042	10SANJUANR38	310 – 441	5.9 - 10.4	7.2 – 8.0	22.3 – 24.6	96 – 126	140 – 164	0.04			
Tt04043	10HOGBACKC43	312 – 402	6.2 – 10.1	7.4 – 8.2	22.3 – 24.6	60 – 68	116 – 126	0.05			
Tt04044	10SANJUANR26	309 – 443	5.8 - 10.3	7.3 – 8.1	22.3 – 24.6	100 – 108	144 – 146	0.08			
Tt04045	06CHACORIV04	321 – 460	5.7 – 10.3	7.4 – 8.1	22.3 – 24.6	78 – 94	98 – 124	0.04			
Tt04046	10HOGBACKC44	315 – 427	6.1 – 10.5	7.4 – 8.1	22.3 – 24.6	76 – 120	134 – 156	0.31			
Tt04047	07MANCOSRI01	316 – 449	6.2 – 10.4	7.5 – 8.1	22.3 – 24.6	82 – 94	112 – 128	0.16			
Tt04048	10FRUCANAL45	318 – 433	5.8 – 10.5	7.4 – 8.2	21.7 – 24.6	98 - 116	152 – 158	0.03			
Tt04049	10FRUCANAL40	310 – 432	4.2 – 10.6	7.5 – 8.5	21.7 – 24.5	82	130 – 140	0.01			

Table 11. Summary of *Hyalella azteca* survival, growth and reproduction endpoints for Navajo Nation sediments. Shaded cells are significantly less than controls (p < 0.05).

Test ID	Location	28 Day Mean % Survival (N = 12)	28 Day Mean % Survival (N = 8)	35 Day Mean % Survival (N = 8)	42 Day Mean % Survival (N = 8)	28 Day Mean Weight of Survivors (mg)	28 Day Mean Individual Weight based on 10 Organisms per Chamber (mg)	42 Day Mean Weight of Survivors (mg)	42 Day Mean Individual Weight based on 10 Organisms per Chamber (mg)	42 Day Average Young/Female
Tt04050	Controls	84.2	87.5	82.5	81.3	0.30	0.24	0.49	0.40	2.8
Tt04040	02SANJUANR07	90	90	90	88.8	0.70	0.63	0.74	0.66	6.6
Tt04041	02SANJUANR06	86.7	86.3	83.8	82.5	0.55	0.49	0.58	0.48	2.0
Tt04042	10SANJUANR38	56.7	50	47.5	45.0	0.33	0.23	0.71	0.32	5.9
Tt04043	10HOGBACKC43	93.3	88.8	87.5	87.5	0.29	0.30	0.58	0.51	4.1
Tt04044	10SANJUANR26	96.7	98.8	91.3	91.3	0.62	0.57	0.70	0.64	8.6
Tt04045	06CHACORIV04	82.5	96.3	96.3	96.3	0.84	0.46	0.50	0.48	2.3
Tt04046	10HOGBACKC44	89.2	87.5	87.5	90	0.44	0.41	0.67	0.61	4.7
Tt04047	07MANCOSRI01	76.7	73.8	73.8	73.8	0.33	0.27	0.52	0.39	1.7
Tt04048	10FRUCANAL45	89.2	86.3	83.8	83.8	0.83	0.79	0.71	0.60	4.4
Tt04049	10FRUCANAL40	88.3	95.0	90	90	0.65	0.49	0.63	0.57	3.4

Table 12. Summary of general chemistry and metals analysis of Navajo Nation sediments. Bolded values indicate the maximum measured value across all sediments. Shaded cells indicate measured value above the Sediment Screening Level (Buchman, 2008).

onaded cens mared		Sediments											
Parameter	Units	Sediment Screening Level	02SANJUANR07	02SANUANR06	10SANJUANR38	10HOGBACKC43	10SANJUANR26	06CHACORIV04	10HOGBACKC44	07MANCOSRI01	10FRUCANAL45	10FRUCANAL40	
Total Solids	%	NA	68.1	70.2	57.2	75.5	56.8	54.6	69.8	59.1	63	71.5	
Acid Volatile Sulfide (AVS)	μmole/g	NA	0.308	0.37	0.9	0.007 U	0.57	0.007 U	0.57	0.037	0.39	0.26	
Total Organic Carbon (TOC)	%	NA	0.82	0.73	1.25	0.25	0.85	0.62	0.2	0.97	0.63	0.41	
Aluminum	mg/Kg	NA	11300	9140	12000	6050	13300	15700	5930	11300	9690	7320	
Antimony	mg/Kg	3	0.109	0.092	0.085	0.067	0.097	0.08 J	0.052	0.07 J	0.076	0.07	
Arsenic	mg/Kg	5.9	5.88	4.32	4.87	2.4	5.56	6.26	2.38	4.5	4.08	2.77	
Barium	mg/Kg	NA	220	208	294	240	242	224	209	134	257	358	
Beryllium	mg/Kg	NA	0.9	0.668	1.08	0.484	1.04	1.17	0.472	1.47	0.831	0.601	
Cadmium	mg/Kg	0.583	0.316	0.192	0.191	0.079	0.239	0.235	0.082	0.34	0.172	0.12	
Chromium	mg/Kg	26	12.7	9.56	10.2	6.87	11.1	13.5	5.31	6.13	8.03	6.29	
Cobalt	mg/Kg	50	7.49	5.9	8.18	4.39	7.82	7.94	3.77	6.46	6.7	4.92	
Copper	mg/Kg	28	17.9	13.1	18.1	7.88	18.1	19	7.73	13.9	15.8	10.3	
Iron	mg/Kg	NA	16300	12700	15500	8890	16200	17900	8640	13100	13700	10300	
Lead	mg/Kg	31	12.9	9.68	13.8	6.52	13.5	14.7	7.04	16	13.4	9.59	
Manganese	mg/Kg	460	394	354	571	222	450	330	219	199	385	241	
Mercury	mg/Kg	0.174	0.026 J	0.016 J	0.023 J	0.007 J	0.026 J	0.03 J	0.005 J	0.045 J	0.019 J	0.01 J	
Molybdenum	mg/Kg	NA	1.41	0.864	0.482	0.309	0.885	0.719	0.293	0.688	0.478	0.272	
Nickel	mg/Kg	16	15.4	11.4	10.6	5.91	12.3	13.6	5.42	10	8.73	6.4	
Selenium	mg/Kg	NA	0.62 J	0.36 J	0.29 J	0.14 J	0.5 J	0.47 J	0.14 J	0.67 J	0.24 J	0.18 J	
Silver	mg/Kg	0.5	0.082	0.054	0.08	0.024	0.081	0.09	0.024	0.087	0.07	0.047	
Thallium	mg/Kg	NA	0.285	0.195	0.212	0.108	0.258	0.27	0.097	0.268	0.173	0.126	
Vanadium	mg/Kg	NA	26.4	20.7	23.2	13.9	25.7	28.8	12.8	14	19.4	14.8	
Zinc	mg/Kg	98	54.9	42.3	59.3	29.2	58	58.7	31.7	48.1	62.5	43.4	

Table 13. Summary of correlation r values between measured analytes and observed toxicity endpoints. Shaded values indicate a significant (p < 0.05) correlation between the measured analyte and the observed toxicity endpoint.

,	Correlations (Toxicity versus Chemistry NN Sediment Data)											
		tions are significa	•	icht Dataj								
		deletion of miss	•									
	28-d Survival	35-d Survival	42-d Survival	28-d Survivor	28-d Original	42-d Survivor	42-d Original	Young/Female				
Variable	20 a 3ai vivai	33 d 3di vivai	42 a 3ai vivai	Weight	Weight	Weight	Weight	Touris/Terriale				
Total Solids (%)	0.460416	0.289252	0.294878	-0.234432	0.016630	0.083780	0.341595	-0.157225				
AVS (µMole/g)	-0.402465	-0.579533	-0.570811	-0.138157	0.014272	0.741019	-0.038880	0.604992				
TOC (%)	-0.402463	-0.672427	-0.704442	-0.138137	-0.133649	0.172436	-0.512305	0.804932				
Aluminum (mg/kg)	-0.302966	-0.068503	-0.101525	0.417436	0.113178	-0.142617	-0.312303	0.213922				
Antimony (mg/kg)	0.017652	0.004841	-0.101323	0.366713	0.388421	0.342275	0.170004	0.148829				
Arsenic (mg/kg)	-0.207493	-0.015386	-0.058767	0.466470	0.248820	0.010804	-0.066442	0.236871				
		-0.299139										
Barium (mg/kg)	-0.194603		-0.305887	-0.057226	0.043448	0.291884	-0.110954	0.416402				
Beryllium (mg/kg)	-0.478564	-0.321734	-0.335381	0.048533	-0.153377	-0.262249	-0.462097	-0.060044				
Cadmium (mg/kg)	-0.204738	-0.093150	-0.123712	0.185483	0.105921	-0.088577	-0.139485	0.033170				
Chromium (mg/kg)	-0.080307	0.115060	0.062576	0.527094	0.292426	0.083826	0.065015	0.322832				
Cobalt (mg/kg)	-0.405491	-0.282320	-0.324939	0.364517	0.183206	0.149013	-0.219188	0.332693				
Copper (mg/kg)	-0.326083	-0.182674	-0.224494	0.482823	0.300271	0.177724	-0.111044	0.329592				
Iron (mg/kg)	-0.269060	-0.080238	-0.123238	0.505785	0.275479	0.074086	-0.091546	0.277737				
Lead (mg/kg)	-0.423928	-0.270781	-0.293355	0.311309	0.131285	-0.059457	-0.299556	0.043214				
Manganese (mg/kg)	-0.442308	-0.500080	-0.535738	0.184823	0.181939	0.566060	-0.144316	0.595719				
Mercury (mg/kg)	-0.351140	-0.208727	-0.226588	0.076290	-0.078586	-0.287501	-0.368473	-0.108031				
Molybdenum (mg/kg)	0.134342	0.182097	0.135768	0.345233	0.367126	0.182440	0.257061	0.292241				
Nickel (mg/kg)	-0.117315	0.045453	-0.005467	0.443675	0.284192	0.056259	0.019272	0.231366				
Selenium (mg/kg)	-0.089758	0.029477	0.000826	0.160199	0.070716	-0.162358	-0.075598	0.045546				
Silver (mg/kg)	-0.377694	-0.207674	-0.242166	0.379448	0.178670	-0.015841	-0.232833	0.124034				
Thallium (mg/kg)	-0.212624	-0.053242	-0.092048	0.304028	0.137524	-0.080330	-0.131017	0.147299				
Vanadium (mg/kg)	-0.105634	0.073537	0.024741	0.572258	0.349456	0.158717	0.080144	0.381565				
Zinc (mg/kg)	-0.317922	-0.212260	-0.245007	0.574306	0.441381	0.283107	-0.056616	0.306324				

SOIL TOXICITY TEST RESULTS

OVERLYING PHYSICAL/CHEMICAL RESULTS

Physicochemical parameters measured in the soil include pH, water holding capacity and light intensity (Table 14). Physicochemical data are provided in Attachment C.

STATISTICAL ANALYSIS

A Duncan's test was used to test significant differences between the controls and the site soils. Results that were significantly lower than the controls are summarized in Table 15. Significance is defined as a p value <0.05 for an ANOVA where the test result was less than its control. Results that were significantly higher than the control are indicated as such in Attachment D but are not included in Table 15 because they do not suggest soil toxicity.

PLANT TEST RESULTS

Several soil samples resulted in significantly less germination with respect to the controls and multiple soil samples produced plants with significantly shorter shoots and roots when compared to the controls (Table 15). Overall, there were no significant effects on mean total dry weight, mean root weight or mean shoot weight with any of the soil samples except for Soil-270-01 (mean total dry weight, mean root weight and mean shoot weight) and Soil-200-01 (mean total dry weight) and squash.

Squash (Cucurbito pepo)

The squash toxicity tests resulted in significant less germination in six soil samples (Soil-295-01, Soil-270-01, Soil-200-01, Soil-FR-01, Soil-AS-01, and Soil-AV-01) (Table 15). In three of these six identified samples (Soil-270-01, Soil-295-01, and Soil-200-01), the squash shoots and roots were also identified as being significantly shorter than the controls. Five additional soils (Soil-157-01, Soil-200-02, Soil-FR-01, Soil-AS-01, and Soil-AV-01) resulted in squash roots that were significantly shorter than controls (Table 15).

Melon (Cucumis melo)

The melon toxicity tests resulted in significant less germination in four soil samples (Soil-157-01, Soil-270-01, Soil-FR-01, and Soil-AV-01) (Table 15). In one of these four identified samples (Soil-270-01), the melon shoots and roots were also identified as being significantly shorter than the controls. Two additional soils (Soil-157-01 and Soil-AV-01) resulted in melon roots that were significantly shorter than controls (Table 15).

Corn (Zea mays)

The corn toxicity tests resulted in significant less germination in two soil samples (Soil-295-01 and Soil-270-01) (Table 15). In both of these identified samples, the corn shoots and roots were also identified as being significantly shorter than the controls. Five additional soils (Soil-157-01, Soil-TP-01, Soil-FR-01, Soil-AS-01, and Soil-AV-01) resulted in corn roots that were significantly shorter than controls (Table 15).

Alfalfa (Medicago sativa)

The alfalfa toxicity test did not result in any significant differences (Table 15).

Table 14. Summary of soil quality data and test conditions for soil toxicity test.

				Water			_
Test ID	Location	pН	Light	Holding	Temp. (°C)	Relative Humidity, Instantaneous (%)	Barometric
			Intensity	Capacity (%)	Instantaneous	instantaneous (%)	Pressure (mm Hg)
Cucurbita p	еро			(/-/	J.		
Tt04075	Control	6.3 - 7.0	95.1 – 97.8	355.2	23.1 - 25.7	21.0 - 36.0	29.2 – 29.8
Tt04076	Soil-157-01	7.4 – 8.0	99.4 – 101.7	50	23.2 – 25.9	23.0 - 39.0	29.2 – 29.8
Tt04077	Soil-295-01	7.4 – 8.0	95.1 – 97.8	50	23.1 – 25.7	21.0 - 36.0	29.2 – 29.8
Tt04078	Soil-270-01	7.6 – 8.0	99.4 – 101.7	48	23.2 - 25.9	23.0 – 39.0	29.2 – 29.8
Tt04079	Soil-200-01	7.8	95.1 – 97.8	55.8	23.1 – 25.7	21.0 – 36.0	29.4 – 29.8
Tt04080	Soil-TP-01	7.4 – 8.0	101.4 - 102.3	50	23.0 – 26.2	23.0 – 38.0	29.2 – 29.8
Tt04081	Soil-200-02	7.6 – 8.0	95.1 – 97.8	56	23.1 – 26.3	21.0 – 36.0	29.2 – 29.8
Tt04082	Soil-FR-01	7.7 – 7.9	101.4 - 102.3	49.1	23.0 – 26.2	23.0 – 38.0	29.2 – 29.8
Tt04083	Soil-AS-01	7.6 – 7.8	101.4 - 102.3	62.3	23.0 – 26.2	23.0 – 38.0	29.2 – 29.8
Tt04084	Soil-295-02	7.9 – 8.0	99.4 – 101.7	53.1	23.2 – 25.9	23.0 – 39.0	29.2 – 29.8
Tt04085	Soil-AV-01	7.6 – 8.2	101.4 - 102.3	56.9	23.0 – 26.2	23.0 – 38.0	29.2 – 29.8
Cucumis me	elo						
Tt04086	Control	6.3 - 7.4	95.5	355.2	23.1 – 25.7	21.0 – 36.0	29.2 – 29.8
Tt04087	Soil-157-01	7.6 – 8.0	99.4	50	23.2 – 25.9	23.0 – 39.0	29.2 – 29.8
Tt04088	Soil-295-01	7.8 – 8.0	95.1	50	23.1 – 25.7	21.0 - 36.0	29.2 – 29.8
Tt04089	Soil-270-01	7.5 – 8.0	99.4	48	23.2 - 25.9	23.0 - 39.0	29.2 – 29.8
Tt04090	Soil-200-01	7.3 – 7.8	95.1 – 96.8	55.8	23.1 – 25.7	21.0 - 36.0	29.2 – 29.8
Tt04091	Soil-TP-01	7.5 – 8.0	101.4	50	23.0 - 26.2	23.0 – 38.0	29.2 – 29.8
Tt04092	Soil-200-02	8.0	95.1	56	23.1 – 26.3	21.0 - 36.0	29.2 – 29.8
Tt04093	Soil-FR-01	7.7 – 7.9	101.4	49.1	23.0 - 26.2	23.0 - 38.0	29.2 – 29.8
Tt04094	Soil-AS-01	7.8	101.4	62.3	23.0 - 26.2	23.0 - 38.0	29.2 – 29.8
Tt04095	Soil-295-02	8.0 - 9.0	99.4	53.1	23.2 - 25.9	23.0 - 39.0	29.2 – 29.8
Tt04096	Soil-AV-01	7.8 – 8.2	101.4	56.9	23.0 - 26.2	23.0 – 38.0	29.2 – 29.8
Zea mays							1
Tt04097	Control	6.3 - 6.9	95.1 – 96.8	355.2	23.1 – 25.7	21.0 - 35.0	29.4 – 29.8
Tt04098	Soil-157-01	7.5 – 8.0	99.4 – 104.6	50	23.2 – 32.0	23.0 – 32.0	29.4 – 29.8
Tt04099	Soil-295-01	7.2 – 8.0	95.1 – 96.8	50	23.1 – 25.7	21.0 – 35.0	29.4 – 29.8
Tt04100	Soil-270-01	7.6 - 8.0	99.4 – 104.6	48	23.2 – 25.9	23.0 – 32.0	29.4 – 29.8
Tt04101	Soil-200-01	7.2 – 7.8	95.1 – 96.8	55.8	23.1 – 25.7	21.0 – 35.0	29.4 – 29.8
Tt04102	Soil-TP-01	7.3 – 8.0	101.4 - 102.6	50	23.3 – 25.4	23.0 – 32.0	29.4 – 29.8
Tt04103	Soil-200-02	7.5 - 8.0	95.1 – 96.8	56	23.1 – 25.7	21.0 – 35.0	29.4 – 29.8
Tt04104	Soil-FR-01	7.5 – 7.9	101.4 - 102.6	49.1	23.0 – 25.4	23.0 – 32.0	29.4 – 29.8
Tt04105	Soil-AS-01	7.3 – 7.8	101.4 - 102.6	62.3	23.0 - 25.4	23.0 – 32.0	29.4 – 29.8
Tt04105	Soil-295-02	7.8 – 8.0	99.4 – 104.6	53.1	23.2 – 25.9	23.0 – 32.0	29.4 – 29.8
Tt04107	Soil-AV-01	7.4 - 8.2	99.4 – 104.6	56.9	23.2 - 25.9	23.0 – 32.0	29.4 – 29.8
	L	1 7.4 - 0.2	99.4 - 104.0	30.9	23.2 - 23.9	23.0 – 32.0	25.4-25.8
Medicago s	Control	62 71	0E 1 07 0	255.2	22.1 25.7	21.0. 26.0	29.2 – 29.8
Tt04108		6.3 – 7.1	95.1 – 97.0	355.2	23.1 – 25.7	21.0 – 36.0	29.2 – 29.8
Tt04109	Soil-157-01	7.3 – 8.0	99.4 – 101.0	50	23.2 - 25.9	23.0 – 39.0	
Tt04110	Soil-295-01	7.6 - 8.0	95.1 – 97.8	50	23.1 – 25.7	21.0 – 36.0	29.2 – 29.8
Tt04111	Soil-270-01	7.6 - 8.0	99.4 – 101.7	48	23.2 - 25.9	23.0 – 39.0	29.2 – 29.8
Tt04112	Soil-200-01	7.4 – 7.8	95.1 – 97.8	55.8	23.1 – 25.7	21.0 – 36.0	29.2 – 29.8
Tt04113	Soil-TP-01	7.4 – 8.0	101.4 – 102.3	50	23.0 – 25.4	23.0 – 38.0	29.2 – 29.8
Tt04114	Soil-200-02	7.9 – 8.0	101.4 - 102.3	56	23.0 – 25.4	23.0 – 38.0	29.2 – 29.8
Tt04115	Soil-FR-01	7.5 – 7.9	101.4 - 102.3	49.1	23.0 – 25.4	23.0 – 38.0	29.2 – 29.8
Tt04116	Soil-AS-01	7.7 – 7.8	101.4 - 102.3	62.3	23.0 – 25.4	23.0 – 38.0	29.2 – 29.8
Tt04117	Soil-295-02	8.0 - 8.1	99.4 – 101.7	53.1	23.2 – 25.9	23.0 – 39.0	29.2 – 29.8
Tt04118	Soil-AV-01	7.7 – 8.2	99.4 – 101.7	56.9	23.2 – 25.9	23.0 – 39.0	29.2 – 29.8

Table 15. Summary of plant survival and growth endpoints for soils. Shaded cells are significantly less than controls (p < 0.05).

Test ID	Site	% Germination	Mean Shoot Length (mm)	Mean Root Length (mm)	Mean Total Dry Weight (mg)	Mean Root Weight (mg)	Mean Shoot Weight (mg)
Cucurbita pepo	<u> </u>	***************************************	h				
Tt04075	Control	60	130.1	91.4	31.6	13.2	18.4
Tt04076	Soil-157-01	68	131.2	60.1	37.1	11.4	25.6
Tt04077	Soil-295-01	12	51.4	31	23.5	8.0	15.5
Tt04078	Soil-270-01	0	0	0	0	0	0
Tt04079	Soil-200-01	12	47.2	27.2	9.5	4.1	7.9
Tt04080	Soil-TP-01	88	150.0	69.5	37.9	9.2	28.6
Tt04081	Soil-200-02	56	104.8	56.7	26.7	5.5	21.2
Tt04082	Soil-FR-01	32	69.5	28.1	18.5	10.6	7.9
Tt04083	Soil-AS-01	16	105.6	53.8	28	9.3	18.7
Tt04084	Soil-295-02	56	129.2	81.1	35.0°	11.9°	30.4ª
Tt04085	Soil-AV-01	24	94	34.3	29.7	10.2	19.5
Cucumis melo							*
Tt04086	Control	96	185.8	114.7	77.5	11.3	66.2
Tt04087	Soil-157-01	68	213.1	71.5	109.9	17.4	92.5
Tt04088	Soil-295-01	88	202.6	100.6	93.0	15.0	77.9
Tt04089	Soil-270-01	28	110.2	64.8	104.8	17.1	125.0
Tt04090	Soil-200-01	96	197.1	135.1	102.0	15.9	86.0
Tt04091	Soil-TP-01	100	197.7	104.9	94.5	14.7	79.9
Tt04092	Soil-200-02	88	209.3	117.3	87.8	12.5	75.2
Tt04093	Soil-FR-01	64	214.6	94.7	104.3	14.3	90.0
Tt04094	Soil-AS-01	84	213.8	98.7	104.6	23.6	80.9
Tt04095	Soil-295-02	92	210.7	130.7	118.8	23.6	95.2
Tt04096	Soil-AV-01	36	157.3	54	159.9	20.7	139.2
Zea mays							
Tt04097	Control	92	231.1	249.4	142.4	39.4	95.6
Tt04098	Soil-157-01	96	283.1	159.2	260.7	83.9	176.8
Tt04099	Soil-295-01	44	163.9	83.2	150.5	32.5	118.1
Tt04100	Soil-270-01	44	146.3	108.0	153.6	24.5	129.1
Tt04101	Soil-200-01	88	255.4	214.3	198.6	51.6	146.9
Tt04102	Soil-TP-01	92	224.8	169.1	151.5	25.8	125.8
Tt04103	Soil-200-02	80	242.9	244.8	164.7	31.9	132.7
Tt04104	Soil-FR-01	76	239.7	134.4	155.2	17.7	136.8
Tt04105	Soil-AS-01	84	256.4	176.6	197.0	34.7	162.3
Tt04106	Soil-295-02	96	260.5	245.5	168.3	39.6	128.7
Tt04107	Soil-AV-01	92	198.0	96.1	217.7	42.8	174.9
Medicago sativa							
Tt04108	Control	64	52.4	38.6	7.3	2.6	4.7
Tt04109	Soil-157-01	60	80.1	37.7	8.5	4.1	4.4
Tt04110	Soil-295-01	52	53.3	40.2	5.5	1.3	4.2
Tt04111	Soil-270-01	40	49.2	44.0	3.5	0.9	2.5
Tt04112	Soil-200-01	64	69.7	44.1	7.3	1.8	5.5
Tt04113	Soil-TP-01	60	48.3	41.3	12.0	6.7	5.3
Tt04114	Soil-200-02	80	41.0	68.6	3.6	1.5	2.1
Tt04115	Soil-FR-01	76	72.3	41.2	9.5	3.3	6.3
Tt04116	Soil-AS-01	84	78.5	48.4	4.1	1.2	2.9
Tt04117	Soil-295-02	92	81.2	61.8	5.2	1.6	3.6
Tt04118	Soil-AV-01	64	56.9	47.2	8.4	4.2	4.2

SOIL CHEMISTRY RESULTS

Overall, the soils samples consisted of >89% solids, pH between 7.89 and 8.18, and a range of particle sizes. Soil-200-02 had the highest percentage of larger particles including medium gravel, fine gravel, and very coarse sand while Soil-295-02 had the highest percentage of clay (Table 15).

The analysis of total metals in the soils indicated that there were no exceedances of soil screening values for plant toxicity (Efroymson et al., 1997) for aluminum, antimony, arsenic, barium, beryllium, chromium, cobalt, copper, mercury, nickel, silver, and thallium (Table 16). All soils had concentrations of vanadium higher than the screening value. Soil-200-01 had the most metals with concentrations in exceedance of screening values including cadmium, molybdenum, selenium, vanadium, and zinc. The measured concentrations of cadmium, molybdenum, selenium, and vanadium in Soil-200-01 were also the highest measured in all sampled soils (Table 16). The results of chemical analysis of the soils are summarized in Tables 15 and 16.

Soil-270-01 resulted in significant effects in 3 out of 4 plant species tested but did not have the highest concentration of any metal. Soil-200-01 resulted in no significant effects for 3 out of 4 plant species tested but had the highest metal concentration for 8 metals with five of those exceeding screening values. This suggests that observed effects on plants in the laboratory tests were not linked to measured soil metal concentrations.

Squash (Cucurbito pepo)

The results of the soil toxicity tests were correlated with certain aspects of the analytical results including the percent total solids, the concentration of barium and the percentage of coarse sand. The percentage of total solids was negatively correlated with reductions in average squash root length (p < 0.05; r^2 = 0.4260) (Figure 2 in Attachment D). The average dry weight of squash plants (root and shoot) was positively correlated with the concentration of barium (p <0.05; r^2 = 0.4159) (Figure 2 in Attachment D). The average squash root weight was positively correlated with the concentration of barium (p <0.05; r^2 = 0.4461) but negatively correlated with the percentage of coarse sand in the soil samples (p <0.05; r^2 = 4039) (Figure 2 in Attachment D).

Melon (Cucumis melo)

The toxicity tests conducted with melon seeds resulted in correlations with the soil concentration of mercury and the percentage of total solids. Melon germination (p<0.05, r^2 =0.5695), shoot length (p<0.05, r^2 =0.5021), and melon root length (p<0.05, r^2 =5315) were positively correlated with soil mercury concentration, as the soil mercury concentration increased, so did these endpoints (Figure 3a in Attachment D). However, melon shoot weight was negatively correlated (p<0.05, r^2 =0.4010) with soil mercury concentration (Figure 3 in Attachment D). Two additional soil measures, the percentage total solids and the percentage clay, were negatively correlated with melon root length (p<0.05, r^2 =0.5186) and positively correlated (p<0.05, r^2 =0.4106) with melon root weight, respectively (Figure 3b in Attachment D).

Corn (Zea mays)

The toxicity tests conducted with corn resulted in the most correlation between endpoints and soil chemistry including a negative correlation of corn germination with percent coarse sand (p<0.05, r2=0.4677) and percent medium sand (p<0.05, r2=0.5567) (Figure 4 in Attachment D). Average corn shoot length was negatively correlated (p<0.05, r2=0.4161) with percent medium sand and negative correlated (p<0.05, r2=0.4540) with soil mercury concentration (Figure 4 in Attachment D). While corn root length was correlated with four soil chemistry constituents including a negative correlation with percent total solids (p<0.05, r2=0.6438) and positive correlations with percent fine gravel (p<0.05, r2=0.5145); percent very coarse sand (p<0.05, r2=0.5193); and soil mercury concentration (p<0.05, r2=0.4895) (Figure 5 in Attachment D).

Additional soil chemistry constituents that were correlated with corn endpoints include a negative correlation between average corn dry weight and percent coarse sand (p<0.05, r2=0.5968); a negative correlation between average corn root weight and the percentage of fine sand (p<0.05, r2=0.4373); and a negative correlation between the average corn shoot weight and the percent coarse sand (p<0.05, r2=0.6138) (Figure 6 in Attachment D). A positive correlation was observed between the percentage of silt in the soil samples and average corn dry weight (p<0.05, r2=0.5391); average corn root weight (p<0.05, r2=0.4895) and average corn shoot weight (p<0.05, r2=0.4217) (Figure 7 in Attachment D).

Alfalfa (Medicago sativa)

While the results of the soil toxicity tests indicated that there were not significant differences in the study soil samples and the controls, there were correlations between germination and root length with soil chemistry. Alfalfa germination was positively correlated with the concentration of mercury in the soil (p<0.05; r2 = 0.4065) (Figure 8 in Attachment D). Alfalfa root length was negatively correlated with the percentage of total solids (p<0.05; r2 = 0.6269) and positively correlated with percentage of medium gravel (p<0.05; r2 = 0.5507); percentage of fine gravel (p<0.05; r2 = 0.6084) and the percentage of clay. Shoot length, average dry weight, root length and shoot length were not correlated with any soil chemistry measured.

QUALITY ASSURANCE/QUALITY CONTROL

All organisms appeared healthy and disease free. Organisms responded to positive control (reference toxicant) within 2 standard deviations of the laboratory control mean. Reference toxicant test data are included in Attachment E.

Tetra Tech, Inc.

 Table 15. Summary of results of general chemistry on Navajo Nation soils.

						Surfa	ce Soils				
Parameter	Units	Soil-295-01	Soil-200-02	Soil-200-01	Soil-TP-01	Soil-FR-01	Soil-AS-01	Soil-295-02	Soil-AV-01	Soil-270-01	Soil-157-01
Total Solids	%	94.2	91.3	94	94.2	96.4	93.1	89.6	96.4	95.3	95
рН	su	8.13	8.05	7.93	8.04	7.98	7.93	8.13	7.89	8.18	8.11
Gravel, Medium	%	0	0.39	0	0	0	0	0	0	0	0
Gravel, Fine	%	0.02	4.62	1.98	0.13	0.19	0.32	1.07	0.02	0.21	0.16
Sand, Very Coarse	%	0.33	6.32	3.29	3.37	0.7	1.51	1.48	0.18	0.81	0.43
Sand, Coarse	%	6.1	6.39	3.68	6.26	6.12	3.26	6.17	1.13	11.73	1.99
Sand, Medium	%	12.06	5.58	3.93	6.84	13.15	5.39	11.78	3.45	22.17	3.93
Sand, Fine	%	23.76	9.37	11.38	23.79	31.55	26.84	21.21	14.33	28.75	12.17
Sand, Very Fine	%	11.35	5.77	7.21	12.64	10.41	15.29	9.15	10.04	6.36	8.35
Silt	%	42.58	54.7	64.74	44.29	34.75	41.38	37.41	66.6	25.07	64.06
Clay	%	4.59	6.94	2.31	2.3	2.99	6.64	11.72	5.55	5	4.95

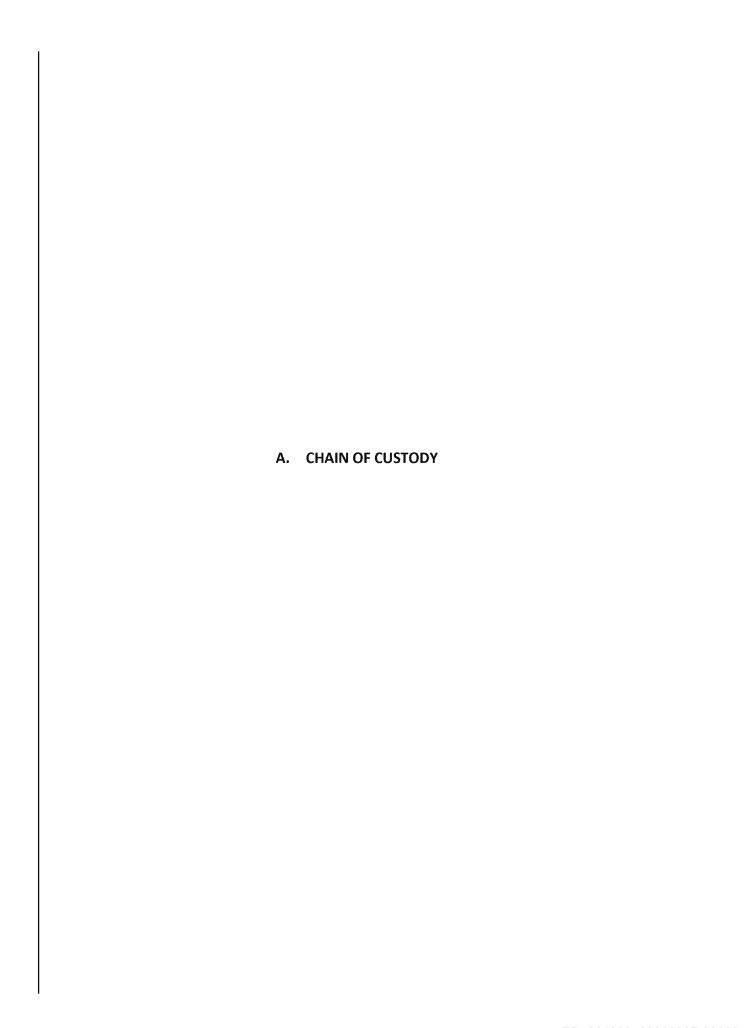

Tetra Tech, Inc.

Table 16. Summary of metals analysis in Navajo Nation soils. Bolded values indicate the maximum measured value across all soils. Shaded cells indicate measured value above the soil screening level for plants (Efroymson et al., 1997).

1997).							Surface	Soils				
Parameter	Units	Soil Screening Level	Soil-295-01	Soil-200-02	Soil-200-01	Soil-TP-01	Soil-FR-01	Soil-AS-01	Soil-295-02	Soil-AV-01	Soil-270-01	Soil-157-01
Aluminum	mg/Kg	50	6910	7570	5140	5900	5620	8230	6010	6860	4550	6380
Antimony	mg/Kg	5	0.084	0.101	0.24	0.087	0.072	0.121	0.099	0.095	0.103	0.074
Arsenic	mg/Kg	18	4.52	4.54	9.14	3.94	3.16	4.58	3.9	4.14	3.56	4
Barium	mg/Kg	500	251	143	68.5	231	141	213	328	248	89.7	120
Beryllium	mg/Kg	10	0.491	0.621	0.46	0.603	0.445	0.697	0.432	0.579	0.35	0.505
Cadmium	mg/Kg	0.5	0.193	0.457	1.54	0.276	0.236	0.273	0.216	0.384	0.491	0.355
Chromium	mg/Kg	10	5.62	8.95	8.8	6.53	5	7.19	5.47	7.78	5.84	8.27
Cobalt	mg/Kg	13	4.6	4.74	4.74	5.95	4.2	6	4.22	4.53	3.29	3.93
Copper	mg/Kg	70	10.9	16.3	16	17.5	11.8	16.7	9.69	12.4	8.45	10.9
Iron	mg/Kg		11400	12500	13500	9340	8810	13700	11700	1030 0	8560	11000
Lead	mg/Kg	50	11.4	23.6	11.3	21.5	17.1	32.9	9.86	19.3	8.45	11
Manganese	mg/Kg	220	259	300	162	387	297	392	324	342	200	197
Mercury	mg/Kg	0.3	0.013 J	0.017 J	0.019 J	0.012 J	0.011 J	0.018 J	0.015 J	0.011 J	0.006 J	0.013 J
Molybdenum	mg/Kg	2	0.517	0.863	7.77	0.47	0.333	0.479	0.531	0.464	1.34	1.15
Nickel	mg/Kg	30	7.61	10.5	25.6	7.68	6.09	8.82	7.01	7.27	8.6	11.5
Selenium	mg/Kg	0.52	0.3 J	0.63 J	3.62	0.3 J	0.23 J	0.35 J	0.3 J	0.28 J	0.64 J	0.69 J
Silver	mg/Kg	2	0.067	0.155	0.117	0.113	0.091	0.17	1.29	0.082	0.055	0.073
Thallium	mg/Kg	1	0.11	0.144	0.47	0.153	0.09	0.141	0.103	0.132	0.164	0.171
Vanadium	mg/Kg	2	21.1	18.8	41.4	20.1	14.8	20.6	18.7	15.7	23.3	16.8
Zinc	mg/Kg	50	36.6	78.5	77.5	79.3	60.4	78.4	34.4	54.7	41.9	50.2

J – indicates an estimated value between the method detection limit and the reporting limit.

Tetra Tech, Inc.

Tetra Tech, Inc. | Biological Research Facility

Project Manager or C	Ć.		Type of Analy	Type of Analyses Requested	Shaded area	Shaded area for TI use only:
Address/Phone:	Address/Phone: White Quality Rigary	20000000000000000000	~		Sample check-in; DO	1
Contact Name/Phone		(N ⊘ 9√ ienieInoC	7 47,		Cond/Salinity	24.5
Project Number:	Project Name: Mr. R. C. + D. J.		7.24.5		Chiorina Appearance	
20 00 00 00 00 00	**************************************	000000000000000000	J¥			
, L		000000000000000000000000000000000000000			Collection	Log Number
	SOIL-FR. Ø1			20,000000000000000000000000000000000000		
	ころことということ)				
		0000000000				

			•••••••			

••••••			••••••••			

Sampled by: (Signature)	——————————————————————————————————————	(Cri.3) X// E/c.i	Recoived by: Fall CX (signature)		Date/Time; 1/2 1/6:45
Received by: (signature)	Date/Time; Received by: (signature)		Date/Time:	Received #W		
	FORM DISTRIBUTION: White - TI BRF		Yellow - Report Pink	Pink - Sampler		} {

Teta Tech, Inc. | Biological Research Facility

ზ : :)

7 7 5

Project Manager or Client Contact:	Stoke Aware SOS-366-107	2.00 2.00 2.00	Type of Ana	Type of Analyses Requested	Shaded are	Shaded area for Tt use only:
Address/Phone:		S.191 72士 (N			Sample check-in DO T	7: 3/40
Contact Name/Phone:			740]		Cond/Salimity	
Project Number:	Project Name: Why. To Why. AVSC # Town.	iseviaea io iadn	S- γ		Chiorine Appearance	
Page of	on:		T/F			
Date	Sample Identification/Station		,		Collection	Log Number
57,6 8/ 55i	SOIL- 295-22	*******				
S101,181/18/6/	301K- 288-87					
			••••••			

	, , , , , , , , , , , , , , , , , , ,					
Sampled by: (signature)	. C. Date/Time; 9:25 Relinquished by.		07:31 S/16/01	Received by: P20 CX (Signature)	Ď	Date/Time:
Received by: (signature)	Date/Time: Received by: (signature)		Data/Time:	Recoived XX		
	FORM DISTRIBUTION: White TIBRE		Yellow - Report Pir	Pink - Sampler		

2

Totra Tech, Inc. | Biological Research Facility

Shaded area for 71 use only:	theck-in:	nce		tion Log Number								2	Date/Time: 14/31/18/16.12	DakeTime;	*Prior
Type of Analyses Requested Shadi		Appearance											Date/Time: 10/31/18/6.145 (signatura) (FeJ. EX	Date/Time: Received/A	Report Pink - Sampler
	377 (N W 9vi erenieinoo	mber of	ny 		<u> </u>	<u>></u>			 ***************************************			 		ä	if Yellow - Report
Project Manager or Ollent Contact: Store Austria SOS-368-1037		Project Name:	Sample Location:	Sample Identification/Station	SoIL-178/ダー	ころったことの	**************************************						Date/Time: 1343 Retirnquished by: 15/5/18/1/52	Date/Time: Received by: (signature)	FORM DISTRIBUTION: White - TI BRF
Project Manager or Ollent	Address/Phone: Contact Name/Phone:	Project Number.	- Sed - Sed	Date Time				***************************************					Sampled by. // (Received by: (signature)	

P

Shaded area for Tt use only:	3,4°C.	lion Log Number od	Control of the Contro								Date/Time:	Dale/Time:	p=====qqqqqqq
Type of Analyses Requested Shade	Sample check in the check in th										Date/Time: / C:Wo Received by: Fell CX	Date/Time: Received by: (signatura)	William Brand Dink Camaring
450-805-508-103-		Sample Identification/Station		Sott- 295-81							Date/Time: (340) Relinquished by: // C	Date/fine; Received by:	CODA TICHON WHICH TANKS
Project Manager or Client Contact:	Address/Phone: Contact Name/Phone: Project Number: Project Name/Phone: Project Name Project N	Date Time		\$ \[\frac{1}{2} \		400000000000000000000000000000000000000		 			Sampled by: (Signature)	Received by/	

>

Talasa Kara Ta

Shaded area for TI use only:	reck-in:	on Log Number d									Date/Time:	DateTime:
Type of Analyses Requested Shaded	Sample check-in-	Collection									Received by: こんの (Signature) アイル	Received by: (signature)
	Preservalive(DN) エムI Number of Containers コンプト・カオアホ		>	<u>></u>							Date/Time:	Date/Time:
Š	B	Sample Identification/Station	マンド ゴエの5	So <i>ZI-157-XI</i>							Cale/Tipe: 10 45 Relinquished by: // /	Date/Time: Received by: (signature)
Project Manager or Client (Address/Phone: Contact Name/Phone: Project Number: R	Date	S	N S						•••••••••••••••••••••••••••••••••••••••	 (signature)	Received by Coll (Signature)

FORM DISTRIBUTION: White - TI BRF Yallo

Yellow - Report Pir

Pink - Sampler

Tetra Tech, Inc. Biological Research Facility

ን

Ì

nager or Client C.	\$		edý.	Type of Analyses Requested	8 .5u0 8	T use only:
3		Ve (D/ N), 도간	TV3 N:TC		# K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-	73 HE
7.8	Project Name: NAMENO NATEON MOCH Pacing		5 - 4		Chlorine Appearance	763
am of the second	cation.		·24		C	6.05
	Sample Identification/Station	~~~~~~)[AQ]		5 p	Log Number
3	シスタッカッケング	~~~			E	7+04042
2		 	>		¢	17-04043
•						

		***************************************	,			

					000000000000000000000000000000000000000	
				••••••	0000000000	
٠			****************			
M	Date/Implie 13:15 Relinquished by: // //		Date/Time:	16:30 (Signatury) Feld		Date/Time: 11/1//1/6:32
	Date/Time; Received by: (signature)		Datestime	Receipt (standard)	TE DAY	
	FORM DISTRIBUTION: White - TI BRE	%	Yellow - Report	Pink - Sampler		Outoo

Tetra Tech, Inc. | Biological Research Facility

Project Manager or (*		Type of A	Type of Analyses Requested	Shaded area for Tt use only:
Address/Phone:	Address/Phone: NAER OWATTY DIVEN		W.		Sample check-in:
Contact Name/Phon	pogenoneegonomoneegon	(M Ø)ə\ nənisinoC	JWW):		T PH Cond/Salinity
Project Number:	Project Name:		Ŋ		Chlorine
	NAMES NATIONS WAS A TONCON		***		Appearance
ö	callon:	~~~000000000	ZĮ V		325
Date	Sample Identification/Station	300300-3	Kan		9 8 9
					2 4 C 4 C
5	IN FRUCANAL LD		>		4040

••••••					
	•				
Sampled by: (signature)	Date/Time: 10LO Relinquished by: /// // // // // // // // // (signature)	a . ^		: 32 (Signature) / C	C C Date/Time: (C:30
Received by: (signature)	Date/Time: Received by: (signature)		Date/Time:	Heere Property of the Control of the	CaleClime:
	FORM DISTRIBUTION: White - Tt BRF	Yello	Yellow - Report	Pink - Sampler	D

Tetra Tech, Inc. | Biological Research Facility

Shaded area for Tt use only:	Meck-in: 21 26 3.11C		778	Bon Pe	7404040	140404								Date/Tinge:	Date/Time:
Type of Analyses Requested Shad	Sample Check-in: D P T D PH Cond/Sainty	Appearance		Collection										i. 16:44 Received by PALE	r. Received by: (signature)
	INSWICE SUBULEIVOS BIT (N Q) %) to 19dn	nuM ************************************	? !	>	<u> </u>			 •••••••••••••••••••••••••••••••••••••••	~~~~				Date/Tirpe:	Date/Time:
Hent Contact: Stroke, Alection SOS-265-1037	Address/Phone: Strate Contact Name/Phone: Strate Contact Name/Phone: Strate Contact Name/Phone: Strate Contact Name (Property Contact Nam	73874 NAME: 101.472/12	iion;	Sample Identification/Station	ダン シネシブンネン ダブ	B2 SANJUANR X6						***************************************	, ,	C Date/Time: 10:15 Relinquished by:	Date/Time: Received by: (signature)
Project Manager or C.	Address/Phone; Contact Name/Phone	Project Number:	00 00 00 00 00	Date			 							Sampled by: //	Received by:)

FORM DISTRIBUTION: White - Tt BRF

Yellow - Report Pin

Pink - Sampler

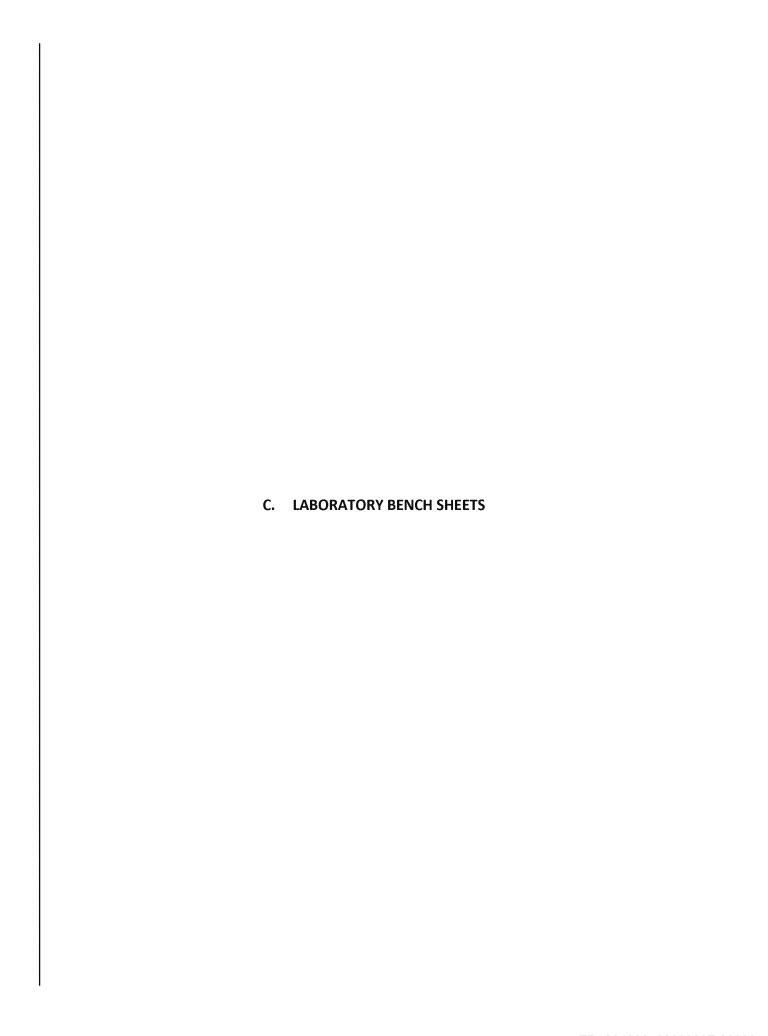
>

Ì

Tetra Tech, Inc. | Biological Research Facility

0000000			Shaded area for Tt use only:
Address/Prone: PATA OWALTY BASS	TAN	Sample check-iii	я сл с. <mark> </mark>
	Sontair	FH Cond/Selinity	
Ž	000000000000000000000000000000000000000	e en	
	000000000000000000000000000000000000000	VA	Hø'
Sample Identification/Station	4224	Collection AMethod	Log Number
>			4040
>	>		1,04045
1000000170	000000000000000000000000000000000000000		
72			
Relinquished by: /// (Date/Time: Received t	Received by: (signature) $\mathcal{F}_{\mathcal{A}}$ $\mathcal{C}_{\mathcal{K}}$	Date/Time: //6.245
Received by:	Date/Time: Received by:	Ÿ.	Date/Time:

Tata Tech, inc. Biological Research Facility


> >

Shaded area for Tt use only:	theck-in: #* M		4.3 0.16 on Log Number	24444	140404H									Dale/Time:	Date/Time;	,
Shade	Sample check-in: DO VINA # # # # # # # # # # # # # # # # # # #	Chlorine Appearance HAKP:	Collection Method											ڻ		
Type of Analyses Requested													***************************************	Received by:	Received by: (signature)	Pink - Samoler
Type of Analy	EVENTAL	2-milvi	ָרָענים בייין	<u> </u>	5	***************************************			***************************************					5	Date/Time:	Yellow - Report Pink
	337 (N ♠ e _v aneniahnoC	ritevreser9		<u>~</u>	<u> </u>	,		 preorooneeee	***************************************	 	 			-	***************************************	T A
,			on/Station	2										Relinquished by: // (Received by: (signature)	FORM DISTRIBUTION: White TI BRF
Sept. Freeze, Sept. Sept		7	Sample Identification/Station	1× 1068200 44	WTMANCOSRI WI	~						***************************************		Date/Time: <i>Q:/</i> 5	Date/Time:	SCASC
Client Contact:	S	738799 Sample Location:		70 1 12	YWYX									, harmonia		
Project Manager or Client Contact:	Address/Phone: Contact Name/Phone:	Project Number: (W - エルMーイスを子9月 Page of Sample Loca	Date	S16 3/1/15/01	S101 /2//57/1				7000000					Sampled by: (signature)	Received by: (signature)	

 Table B-1. Summary of laboratory water used in 42-day H. azteca sediment testing.

Renewal	Date Made	pH (SU)	Conductivity	DO	Alkalinity	Hardness	Chlorine	Ammonia
Water Batch			(µmhos)	(mg/L)	(mg/L as CaCO3)	(mg/L as CaCO3)	(mg/L)	(mg/L)
Lab00877	11/15/18	7.6	328	8.3	52	100	ND	0.06
							(<0.01)	
Lab00882	11/15/18	7.9	284	9.9	46	93	ND	ND
							(<0.01)	(<0.01)
Lab00884	11/21/18	6.8	325	10.4	42	92	0.06	0.01
Lab00886	12/4/18	7.4	318	9.9	56	110	ND	0.05
							(<0.01)	
Lab00887	12/6/18	7.5	320	8.7	46	94	ND	ND
							(<0.01)	(<0.01)

Medicago sativa Toxicity Bench Sheet

Test # 12.

START Date/Time (MMDDYYYY HH:MM):

Page 1 of 2

FINISH Date/Time (MMDDYYYY HH:MM):

2/6/2

Client/Project: NA Mai

NA RO NATON

Test Substance:

	Mean Dry	Weight Ima	4 47.	• •	r	3	4	; , , , ,	o In		4
	Total Dry	, we will a second	2 2		C C		F.				~ ~
decement and the second	Percent	Cermination	8 7		C	÷	<u> </u>	· · · · · · · · · · · · · · · · · · ·	C	manual Ma	0
m	Number of Seeds	Germinated	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·	4		d.			**************************************	de co
	Number of	Seeds Planted	V	·	V	4	general .	**************************************	and the second	1	
	C C		4	*	æ	•		٤		u	u

1 0 2 0 0 0 0 0 0	<u> </u>	200
	0	r L
ins) Ha	r S	r
Light ht. (umo! m²s.1)	ðÉ	8
WHC (%)	K	

かれている。

~~~ Ž	Q E U	Relative Humidity	Pressure		Ž M M M M	Germ	ated				
	(2)	(%)	00 E		co.	U	۵	w	Notes	C)	2
	Ž	0.5	***************************************		0	۵		0	\$		Ž
	5	3,5	2.5	Q	9	0	0	0	ð	8	
	<u>ج</u>	092	98		4	100008885	٥	٥	3		
~~~	216	0,2	8			60		٥			2
	23.6	0.87	8 67		4-	'n	30000-00	0	į.		25
		2,5	3		7	>	*******	J	3		3
	Š.	2.8	ZZ		フ	7	-Princeto	٥			Š
	\$ ¥	o Z	6. 6. 6.		**************************************	<u></u>	-200	<			420

Tetra Tech, Inc Ecological Testing Facility

FINISH Date/Time (MMDDYYYY HH: NMM):

START Date/Time (MMDDYYYY HH:MM):

Page 00 00

NAMATO ATTITUTE

Client/Project:

1 2 /(サ/「A Test Substance: Csャバゼル

Test # 1/70 4/42

4
\$ 0 0 0

heckeo
0829

Ž	0.	Relative Humidity	anssaa		Zumz	ir Germin	ated		: : : :	**************************************	; }
>	్	*	33,44	≪(œ	U	0	w			
	Š	2	¥	C/s	J.		******	٥	3	2	Š
т	Z		J.	Ø	ľ	.	80000	J	Š	2	3
	<u>ر</u> الا	ê	S K	W	<i>"</i>	3	*******	<u></u>	ë;. Ĉ	2	2
	Ž	35.0%	<	m	Z	~~~		3	j	Į.	3
	80	ř	64 Q.	50	J	S		2		3	25
m)	2	O.#.C	7,57	N	 			.j~	68 Č	1)	<u>%</u>
~~~ ~	<u> </u>		Į,	~		5	**********	- )-	a 50	Ş	3
	Ž.	2	Y K	w				<u></u>	\$	2	3
<u>~</u>											
اب اب											
<u></u>											
<u></u>											
			/								
2				/							
2						/					
~~~							/				
2											
 72											
								5			
										000000000000000000000000000000000000000	

Tetra Tech, Inc Ecological Testing Facility

Average Root Length (mm)		f f	? 			***************************************		* 2. 2.			***************************************		4			***************************************	•	~~					\ \ \ \ \		
Root length (mm)	28	**************************************	4		Andrews.	2	¥			Consequences	¥	& ?	0	2	an and a second	34	la constant		**************************************	***************************************	3	4	4	3	APP
Average Shoot Length (mm)	***************************************		9 J					ر ب د		:			^ ~ ~					0		*		c	, , ,	\$	
Shoot length (mm)	9		¢	Proceedings:	e de la composición della comp	55	<u>ر</u> خ چ		R	Summer of the second	Q	్తు	V	Ç	erretorius (management)	9	tumpomorni	constitution.	green et auguste (species et auguste et augu	, promitive of the party of the	Y	ತ	Ç	3	**************************************
Seed	f\$	r	m	4	m	écori,	7	m	*	Ŋ	ę~i	2	m	Ţ	ru	; -	7	m	4	m	₹~1	7	m	7	ທ
å å		•	<	i	S	i		m	أبيبيا		•		W					٥					w		

2014

START Date/Time (MMDDYYYY HH:MM);

3

37672

FINISH Date/Time (MMDDYYYY HH:MM);

Client/Project:

Test Substance: Soil = 157 - 01

2	Number of	Number of Number of Seeds	Percent	Total Dry	Mean Dry
2 2	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
⋖	V	7	0		у
100	V	m	0	¢.	ڼ
Ų	V	4	C	2.3	r r
۵	sr.	~	00	4	<i>(</i> *)
ш	V	M	09	7	Q.

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ā	<u>></u>
	0	p
(ns) Hd	9 *ö	L V
Light Int. ($\mu moi m^2 s^3$)	3 8	Ž
WHC (%)	6	

	 ñ	dem dem	Relative Humidity	Pressure		Mum b	er Germin	ated		4 4 1 2		,
3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	». 3	0.	8	W.	⋖(മ	Ų	۵	iii	က ည သ		
		2	2	ellocol	۵	٥	٥	0	0			RWG
	good		े) L	0	0	0	0	0			K
20.02 20.02	~	X	28	***************************************	٥	٥	 «К	******	٥		Ş	8
9:07 9:07 9:07 9:07 9:07 9:07 9:07		4	32.0	870.7	d	N	M	n	-2000			V
	~**	23.2	0000	2 9.8	~ ~2.	۲)	<i>~</i> ?	~	d			
2657	···	~ ~	0	Ş.,		W	M	M	m			28
3	<u></u>	<i>*</i>	3		~	V	M	M	M			L 8
2		Ł	Ş	- F	<u></u>	n	ęΛ	M	M			2

Data Checked and Approved

Ecological Testing Facility

Tetra Tech, Inc

2014

Shee
Bench
Toxicity
sativa
Medicago

٣

Page 2 of 2	Medicago sativa Toxicity Bench Sheet
START Date/Time (MMDDYYYY HH;MM);	FINISH Date/Time (MMDDYYYY HH:MM):
~ ~	8/6/7
oncorio Oncorio	Test Substance:
NATA ZATION	Sûl-19-0

																						1/2/19 45
i.	y 	3	9,70	3	3	Š	8	, Z.	Ž									**********				
2 0 0 0	2	Ą	2	Z	Th	3)	C/K	2	*						3							
***	MORES															S.			/			
	iii	Μ	Μ	M	*^	~	~	m	M									. /				
ated	۵	M	Μ	M	M	W	M	M	M									<u></u>				
Number Germinated	w	M	Μ	(^	M	2	ä	{\/														
Numbe	ω	M	W	8/	m	W	~	M	(4)													
	<	Q	~	~	~3	64	N	4	~							/						
Pressure	66 20 40 40 40 40 40 40 40 40 40 40 40 40 40	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9	6°	J. 10	747	7 57	Z,	4				/									***************************************
Relative Humidity	\$		938	0,75	200	39%	0	2	å, q	c												
dua	Ç	Š	4.5	Ş	2.0 10 10	8 7.4 8	T O	 7	ă			***************************************										
Ž	> 0	∞	ආ	2	6004 4004	2	2	, ri	ur e-i	4 'C	 	80	Ø,	8	Z	2	23	22	22	78	7.7	88

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

Page of J

Average Root Length (mm)		300000 Sept. 1	<u>ئ</u>			***************************************		~~^^ ~~^					` ` `		<u>.</u>	**************************************		• •				**************************************	7			TO THE THE THE THE THE TAXABLE PROPERTY OF
Root length (mm)	2		**************************************	00000000000000000000000000000000000000	00000000000000000000000000000000000000	7	7	R	***************************************	***************************************	7	9	27	1	отположения (Ž	3	3	Manager Construction	******************************	3	\	3	deceronacionesco.	00000000000000000000000000000000000000	
Average Shoot Length (mm)		<u>د</u>	3				~ V	• • •	2			2))					<u>.</u>				C))		***	MOTORITATION CONTRACTOR CONTRACTO
Shoot length (mm)	Q	8		**************************************	- parameter de la constitución d		£	S		chaeses/76074000000	<u>გ</u>	ß	જ	k		\$	23	Ŝ	distribution and the second se	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S	ķ	Š.	***************************************	de constante de co	Contraction of the Contraction o
Seed	<i>ў∞</i> оў	7	m	4	'n	Socie	N	ent.	4	ហ	good	7	m	4	m	Bood	7	m	4	ហ	gwod.	7	m	7	L	
Rep			⋖	d		-		c					u					<u> </u>					i i i i			

Medicago sativa Toxicity Bench Sheet

Test # ROY(B

FINISH Date/Time (MMDDYYYY HH:WM):

START Date/Time (MMDDYYYY HH:MM):

Page Lof

3761721

Client/Project:

Test Substance:

Mean Dry	Weight mg	ls r m	enska enska	521:	k k	C
Total Dr	Weight (mg)	Ŀ	m	ر م م	ۍ ٥	1/4/14/2
Percent	Germination	0	0	၀ နာ	4 0	<
Number of Seeds	Germinated	4	^	4	rì	C
Number of	Seeds Planted	L	\$\tau	V	C	V
8	L.	<<	æ	U	۵	LL

: : : : : : : : : : : : : : : : : : :	<u> </u>	Ş
	a	pu
(ns) Hd	0 %	<u>ب</u>
Light Int. (umol m² s²)	Š	Š.
WHC (%)	2	

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		······································		1		
T.		Z	Z	E		1330	Ś	Ś	Ŝ
\$ \$ \$ \$ \$	2	Î	3	2	2	Ž	Ž	\$	Ž
٠ د د د	î Ş	p							
	للثة	0	0	•	O	a	0	~	C
ated	۵	0	0		N	C.	d	୧୯୪	~
r Germin	U	0	O	4	71	An	ン	.S.	"
Numbe	යට	0	S	3000000G		d	~	~	· r^)
	<	0	8	***************************************	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Ġ.	Ž		3
Pressure	<u> </u>	Seconds	Z,	Ď	\$ 5 7	7.9.8	95 60		Ž
Relative Humidity	~	Ş	K,	9	0.00	0 0 0	0,58	Ş	0
Temp	Ş	Ž	\ \ \	4	\$ 4 A	27.6	Ċ	T	(d)
 2	è S	0	ç(7	m	4	ហ	ယ	~

Ecological Testing Facility Tetra Tech, Inc

Ž
3
0
ري به
<u>a</u>

FINISH Date/Time (MMDDYYYY HH:MM):	Test Substance: Soit - 296この
START Date/Time (MMDDYYYY HH:MM):	Į.

	mas mæ	Í			i Ç	088)		<u> </u>	•••												
minated	0	R	<	4	C &	C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	N	<u> </u>	~									/			
Number Germinated	8	t N	> 	.)- 	. I	ιδ. ω 2	<i></i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 M					•			/			***************************************	
***************************************	<	J	>	. "	-320	8			**************************************							1					
Pressure	00	Ų.	Z	\$ \$ \$			7 52	Ą	K.				,		7					***************************************	***************************************
Relative Humidity	8	200	2	0	33.6	367	0,50		o X					100000000000000000000000000000000000000						~	
Temp	· C	~	ź	438	c Si	6	5	\^ ~	Ŕ											***************************************	
	> 2	ø	on	2	ęwi ęwi	77	ಧ	hod eta	y mi	/_ 91	h	2	<u>a</u>	8	77	22	73	22	23		R

Tetra Tech, Inc Ecological Testing Facility

Medicago sativa Toxicity Bench Sheet

Page Of O

a. e.

4

Average Root Length (mm)		ASSESSED .	, †				(- - - - -					ر ا ا				(•		, «.		v	****		
Root length (mm)	vo T	Ą	I	3	·,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(w)	3	る	Advance Constitution Constituti	**************************************	\ \ \ \ \	7		<u></u>	**************************************	19	ę	**************************************		······································	***************************************	coperine de la compansión de la compansi		00000000000000000000000000000000000000	**************************************
Average Stoot Length (mm)		assert bear w				00000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·	^ ^			*		~					v v	.	*			ŀ		**************************************
Shoot length (mm)	~~~~	~	Ç	77		2	-3		Santa Company and American		ã	8	ï	ľ		7	~~	**************************************	.mariosassassassassassassassassassassassassas			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	de la constantina del constantina de la constantina de la constantina del constantina de la constantin	**************************************	³⁰ 400000000000000000000000000000000000
Seed	omi	7	m	4	v	 -1	d	m	4	w	ç− -	7	m	4		ç∞ 1	7	m	4	m	Society.	~	m	ব	v

L.3

ထ

ದು

i.i.i

Medicago sativa Toxicity Bench Sheet

Test# AOUIII

START Date/Time (//MDDYYYY HH:MM):

Page Lof &

FINISH Date/Time (MMDDYYYY HH:MM);

2/4/2

Client/Project:

Test Substance:

	70700000000000000000000000000000000000	MANAGEMENT CONTRACTOR	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Number of	Number of Seeds	Percent	Total Dry	Mean Dry
Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
6	÷	0	4.02	28.
V	7	0	r-	4 2
	2	Ŷ 0	0	In V
	7	0	r,	ر د د د
<u></u>	0	C	- 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O

1 1 1 1	<u></u>	<u>چ</u> ۵
	0	Ę
pH (su)	ි දි ර	(D)
Light Int. ($\mu moi m^2 s^3$)	S.	2
WHC (%)	<u>\$</u>	

					17/1/10 25				
2000	<u> </u>	L,	14KF	3	0 08	<u>ر</u> م	\$\$ 75	S	Š
4,1	/ D	Ş		Ş	≪	×	Z	£	Z
A 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S S S S S S								
	w	0	0	0	0 -}	0	0	0	0
#ed	۵	0	O	0	*	Ŋ	Ч	76	~
umber Germinated	J	0	0		***	d	N	6	K
Number	æ	0	٥	0	4	4	R	つ	4
	⋖	0	Ø	angeografia.	-	4	>	>-	>
Pressure	œ F	eren,	2	3	0.00	8 6 7	8	K	Ž
Relative Humidity	(%)	2	Ç	0.48	25.0	0.02	Ş	0,	2
<u> </u>	Ç.	2	K	Ž	4.		<i>*</i>	Ć.	k Ž
ĉ	2	0	p=4	7	m	4	'n	ယ	7

Ecological Testing Facility Tetra Tech, Inc

Page 201 S

	<u> </u>	2			8 / 6 / 7	o					
Client	/Project:	Client/Project: NAVATO NATE ON	V - V- 1 (10000000000000000000000000000000000	Test Subs	Test Substance: Soil - 270 - 01	Š	_	0.000.0000.0000.0000			
	Ten	Relative Humidity	Pressure		Num Se	Number Germinated	ated		,		i
> e 2	P.	Z	Ĩ	4	æ	J	a	LL.	2 0 2	s S S	<u> </u>
00	- -	0	K	ľ	U	~	d	٥		g	8
Ø	K K	. 4	Į		A	~	K	٥		2	Š
	Ç.) (Š	o K		d	4	4	0		4	å
6ml 6ml	2,2	2	j Š	- 350 - 350	O	a	Cs.	0		Ŕ	<u> </u>
72	70. 4	ů,	ત જ	.3"	G	rd	ત્ર	٥		3	8
4~4 (44)	Ş	0,%	7,87	Ĵ	N	N	N	0		13	8
~~ ~~	r syr Ž	2	Z	7	~	٨	1	0		Ş	133
ñ	ヹ	Ş	Š	.2~	A	0	~	9		Ş	3
<u> </u>											
~ ~											
<u></u>											
Ď.											
20											•
~~											
a				/	/						
m R						/					
 Z											
N											
20											
2											
 0 0				~~~~	6000					*	4

Tetra Tech, Inc Ecological Texting Facility

Test # Troil

Average Root Length (mm)		1	4 00 					~ ~			000000000000000000000000000000000000000	· •	s S					7		*******			00000		3
Root length (mm)	Ţ	0	4	tr ''	***	9	00	^Q man		vation	25	0	***************************************	*Sans	au,	0 &	0	÷e,	10000	0000	You	******	*****	1000	AND
Average Shoot Length (mm)			ф (у					<u> </u>		*	2		b, b,				\ \ \)					1		
Shoot length (mm)	4	d S	4	60	s s s	0	0	0000	and the second s	òm		*	*	ş	ě	4 6	9		Auson	xxxx	900	garan.	****	accord	000
Seed	\$~~\$	N	m	4	r.	g-m ²	N	m	4	ഗ	ş-m²	7	m	et.	w	q~	7	m	4	ഹ	şm ş	N	ന	4	un:
å			≪		•		•••••••••••••••••••••••••••••••••••••••	œ		•		d	U					۵					LLI		

Tetra Tech, Inc Ecological Testing Facility

Medicago sativa Toxicity Bench Sheet

Test # THOUSE

Page of A

START Date/Time (MMDDYYYY HH:MM):

81/61/21

FINISH Date/Time (MINDDYYYY HH:MM):

		of the formation of the contract of the contra	
		and the second s	
Š	Š		

>						1
Zean Ory	Weight (mg)	м М	un In	ф ф	4	
Total Dry	Weight (mg)	0 7	رم ا			
Percent	Germination	0	0	0 # # \$ \$ \$	(/*//s	Ç
nam Number of Seeds Percent Total Dry Mean Dry	Germinated	~	tr	` `	? 7	
Number of	Seeds Planted	<u></u>	V	v	(/	V
ç q q	ì	ধ	മാ	U	۵	LLi

(3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Ω	>eO
11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0	ğ
pH (su)	3Q CH	
Light Int. (Lmol m-2 s-1)	Š	<u></u>
WHC (%)	È	

30000-100n	Temp	Relative Humidity	Pressure		Numbe	er Germir	ated		1 4 1 8		
ž Š	0	2	 50 	⋖(යා	U	۵	ш	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	e E	Ų
0	Ź	0	******	O	0	0	0	9		\$	S
	S	2,2	2	0	0	0	0	0		Š	Ž
	432	2	Ž	A)	7	300000¢	0	©-0000000		S	3
	2 4.0	0.00	\$ \$ *	đ.	·V			d-		v C	V
	7 4 6	0.8	8 6 7	4	ΙΛ	Ч	g	4		Z	0
	÷ Š	2,	S	S.	ト	~(~	>		Ž	Ż
	o K	2	K	>	Į,	ત	ત્ય	>-		\$	<u>'</u>
	ć %		\ K	**************************************	V	ત્	K	. ~	,	3	<u>G</u>

Test # 7204112

sativa Toxicit
Medicago
Page 2 of 3

FINISH Date/Time (MMDDYYYY HH:MM):	81/61/71 0021 2018	Test Substance:	120 - 2010-d1
	3)NAIT
START Date/Time (MMD	2	Clent/Project:	MAND

							0 . e0															\ 4 0 ~
 ((),		-0 3	2	S.S.	0	8	23.8	220	377													7
							S S												************	**************		
	~ ~ ~ ~	***************************************																			<u>/</u>	***************************************
	w		3	, D	`	\S^	3-	- .)	J			•		***************************************								
ಇೇಡಿದೆ	۵	Z	4	~	S	દ્ય	N	Ó	٨									/				
ır Germin	Ü	4	Ø	A	0	K	e j	u	4													***************************************
	æ	ba	V	h	<i>h</i>	V	5		V													
	«	y		J	J	2	~	V	N							/						
Pressure	Ø	Z	? K	8	Ţ	4	2.52	Ť	7				/									
Relative Humidity	(%)	2.5		 	0.50	Š	٥ **	0	2 %													
Kemp Temp	2	Y	<u> </u>	¢ S	2	22.0	2,0	2	6													
ċ	2 2 2	00	Ø)	9	~~~	q	a	## ##	ņ	/ 9	r.	2	g	23	77	77	82	Z	N	2	27	8

Ecological Testing Facility Tetra Tech, Inc

Test # Hadille

C. W	Seed	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
	d-mg	45		G	***************************************
	7	3	3		
⋖	m	22			(N)
L	4	**************************************		**************************************	:
	ın	оференция		***************************************	
	gang	4			
	7	2	·	200	
a	m	9	lo-	5	\(\frac{1}{2}\)
	a	×>>			
	'n	LN LSP		Ş	
	end	3		~	***************************************
	2	2	(0	<
v	ĸ		?		>
	4	, description of the state of t		- Constitution of the Cons	
	N			, conservation	
	وسأ	S	**************************************	\$	***************************************
	7	2		0	
0	m	Contraction Contra	3		r V
	4	***************************************		The state of the s	
	រហ			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	gens š	⁄d ∞		; (2)	
	N	0			
u	m	Ş	 \$2	25	アイン
	ಶ	<u></u>			
	m	**************************************		manaman de la composição	

Data Checked and Approved NY

Tetra Tech, Inc Ecological Testing Facility

Medicago sativa Toxicity Bench Sheet

Test# AWIIIS

START Date/Time (MMDDYYYYY HH:MM):

Page of S

3

FINISH Date/Time (MMDDYYYY HH: MM):

2/19/18

Client/Project:

Test Substance:
Soct - TP-0

Number of	er Of	Number of Seeds Percent Total Dry	Percent	Total Dru	Mean
Seeds Planted	ಡಿ	Germinated	Cemination	Weight (mg)	Weight (mg)
<		*	0	4.3	. 6
(~		6	09	4	4
⊱		7	4	Ç	ر ا
6		s	0	5 2 2	ر. د
V		,000000	0		in A

\$ 0 000 CO	<u> </u>	à C
rdidille	0	e E
pH (su)	ි රුර	4
Light int. (μ moi m² s²)	S	Ć
WHC (%)	Ç	

	**	(,	<u></u>	goby.	~n			
2,000	## ## ## ## ##			8	4	Š	S	8	Ş
6 was				3					
6 4 4 2 4	2								
	لندة	0	٦	0	ano	,,	v	******	*******
ated	۵	0	0	0	V	V	٧,	L	L
Gern	w	0	೦	0	-Negger	agonee	T	<i>⊂</i> 8	~
Ž H N	ක	0	^	٥	7	7	K	4	حح
	⋖(0	0	0	m	n	Ļ	L	V
Pressure	go go	u.****	2	2000	8	0 57	<u>ئ</u>	i.	<u> </u>
Relative Humidity	S	8	2	Š	0,5	0 0 0	3	2	880
a E E	Ç	2	T.	J	\$	23.3	27.0	CX CX	2 %
ã	<u> </u>	0	~	~	m	4	n	٥	

Ecological Testing Facility Tetra Tech, Inc

Ö
M
ය ක

Î X	
(MWDDYYY HH: MM)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
a m	<u> </u>
START Date/	

8 Client/Project:

FINISH Date/Time (MMDDvvvv HH:MM):

Test Substance: Sa) = TP=0

																					H	13/19 45
1	œ E	ŝ	35°33	3	#sould	(300	8	3	<u>.</u> 3													4
	5 5 5 5 6 7 7	3	3	2	, And	0	C.	4	Z													
	 Se C C C																					
	iii	~	******	*****	· ••••	Minigage			*******				2 2						7	·		***************************************
ated	۵	L,	پ	Ļ	h	N	I ,		ل													
Number Germinated	U	۲,	a	ď	C.	R	61	n	۲(/					
Numb	යා	K	a	rt	ъ	2	Ť	m	n	٠												
×	«) ~	V	V	'n	V	.j~	`								/						
Pressure	0.0 	Ž	Ţ	J	7	ಗಳ ಬೆಂದು	787	I	(o	,									
Helative Humidity		36.0	\$ ***	? ? ?	o'ji,	Ż	2,35	25.00	Ş		1											
Temo	Č	4	K	% %	77.3	S.	9,57	ž	0,													
	à Ĉ	∞	On.	2	band band	12	m	*	æ	/ 	R	<u></u>	- -	2	77	R	2	<u> </u>	z	\$	7.7	82

Ecological Testing Facility Tetra Tech, Inc

Test# (A-CMII)

	······					,					,					······					ş				~~~~ ₂
Average Root Length (mm)		0	o t	,				^				0 7	; ;				(1			*	~	~ ^>		
Root length (mm)	30	3	9	ż	magnetopenastropost/fr	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			²⁰⁰ 00000000 ²⁰⁰⁰		Ŋ		* ************************************	***************************************	Section (Section (Sec	J			\$	77	3	**************************************	**************************************	Josephinesessesses	·····Oteronasopica/proping
Average Shoot Length (mm)		2	\$ \$-				***	}		** **			n 				4	<u>م</u>					\$T		
Shoot length (mm)	ហ៊	8	es es	S	\$1000000000000000000000000000000000000	M	R		decenses de la constante de la		3		000000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			b o	Ĉ	Š	Ġ	S	The state of the s	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, per control constants	autopidistronistange,
Seed	_e ud	7	~	4	2	g(4	7	rw3	4	'n	gnoğ	. 2	m	4	ហ	poort	7	m	4	m		* *	m	***	ហ
\$			«	Loom		***************************************	i	ati	•				Ų					0				*	لها		

Data Checked and Approved

Tetra Tech, Inc Ecological Testing Facility Test # TOMB

START Date/Time (MMIDDYYYY HH:MM);

Page of p

<u>න</u> ර

12/19/18

FINISH Date/Time (MMDDYYYY HH:MM):

Test Substance:

Client/Project:

ء و م	Numberof	Number of Seeds	t e d	Total Dry	Mean Dry
j	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
<	<u>۲</u>	÷	60	\cdot	k - -
മ	٢.	Ď	00	d	~
U	ir.	m	9	AUGAS CARRA	r S N
۵	&	ı	0	u C	d b r
i.i.l		~	Ç	7	4

ñ	dema	Relative Humidity	Pressure		Zumž	ar Germin	ತ್ಕಿಕಿದ		\$ \$ \$ \$	3000	
	2	S	ore See	≪	₩	J	۵	w	222	S S S S S S S S S S S S S S S S S S S	3
	Ž	2	0,6550	0	<	٥	0	٥		Ź	roor Lood pour
	<u></u>	Š	Ţ	0	0	0	0	O		Ş	Ž
.	į	3.	3	9	Who come		********	•		2	Ś
	6 41	0.67	5	4-	V	d	0	970ap		v Ž	0
	23.3	70,0	8.67	*	V	d	ಣ			E	2
	0	3%.0	3	Š		~s	<u> </u>	A		Ž	8
	4	Ş	S S		\	೧೮	L	Ş		2	(E
	٥ ١	0	Ľ,	· (^	\ <u></u>	6	<u>(</u> ~	Ţ		2	2 E

Medicago sativa Toxicity Bench Sheet

page # of ?

Test# ROYIIK

Campo	FINISH Date/Time (MMDDYYYY HH: MM):
721 BM (8)	01/61/2
Client/Project:	Test Substance:
AND NATURE	

																						73/39 45
 S S S S	V 2 2 2	88	373	Š	002	<u>\$</u>	8	Ž.	Ž													7
£ 77		2	4	2	1. J. J.	3	Ä	Ą	2												4	
	/ 1 2 2																		/			
	w	M	Μ	Μ	mj.	Ţ	*^	77	Μ													
ated	۵	Ŋ	V.	\	h	W	l,	\	h									Z				
Number Germinated	U	Q	લ	~	Ö	(ui	:	m	M													
Runbe	60	\- -	V	\	Ŋ	\ \	l,	l,	5								/					
	<	V	٠	W	Ŋ	S.	V	V	<i>"</i>							/						
Pressure	00 T	Š	Š	L.	4 4 3-	29.7	7 57	Z.	, ,						/							
Relative Humidity	8	Š	9,	04	s z	4.85	0,5%	% o	ÖŽ													
d E E	0	d Fe	K K	X	0 i C	350	5	*<	Š													***************************************
ŝ	3	00	<u>ش</u>	2	\$~d \$~d	2	<u></u>	~~	r.	# 9	5	00	2	2	ri N	22	23	Z	2	8	2	8

Tetra Tech, Inc Ecological Testing Facility

<u>a</u>	Seed	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
············ ś	ųų	S		<u>റ</u>	
	7	Y		0	
≪.	m	4	0000	٥	2
•••••••••••••••••••••••••••••••••••••••	4	5		0	
	v	. X		8 27	
	yeard.	এ		06	
	N	<u>\@</u>		Y r	
a	m	2	d, v	5	4 2 4
•••••••••••••••••••••••••••••••••••••••	4				
	S			~	
	book		3	r	
	7	~	Į.	96	*
w.	m	5~	? ^ }		~
	**	1		2/%/2	, X
	ហ			9000	:
	good .	V.		0	
	7	G		700	4
۵	m	C	4	001	o S
	4	1/		J	
	'n			00	
	q	7	8	£0	
•••••	~	<u>م</u>	4	S	~ *
u.	m	6		S	•
•	T.	****		9000	>
	ın	QUAN-		Sec	

Tetra Tech, Inc Ecological Testing Facility

Agricus.
Q)
Q)
2000
200
چ ق ق
Soor P 2
w
60808
۵ 2 2
1 10000
240
0
Š
Pool
~~~
No.
Sook
sativa
2
ğ
500
5 9005
Ö
õ
1
E KANANA

Test# TOMES

START Date/Time (MMDDYYYYY HH:MM)

A po Taged

FINISH Date/Time (MMDDYYYY HH:MM): 12/19/18

Client/Project:
NAN/ATIV NIPITAL

Test Substance: SGPL - 作作-O

 {	Numberof	Number of Number of Seeds	Percent Total Dry	Total Dry	Zean Ory
D U	Seeds Planted	Germinated	Germination	Weight (mg)	Weight
⋖	<b>(</b> ~	ત	\$	0	ر د د
<b>CD</b>	<b>\</b>	r	0	4,	00 00
w	<b>!</b> ~	4	೦೪	23.6	o Jo
<u> </u>	(m	4-	0	52	ر ب ان
iij	à	+	ф О	· ·	

\$ \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4	_	àe O
**************************************	0	Ē
(75) Ha	Ç.	رد در
Light Int. (jumoi m² s²)	<u>ح</u> ز ق	<u>ෆ</u> ල්
WHC (%)	2	

ã	e E P	Relative Humidity	Pressure		Mumb	Sermi	nated		***************************************		
3	೭	(%)	Œ,	≪.	<b>£</b>	U	۵	LLJ	ZO CES	2 2 2 2	e E
0	2	2	ggeor	0	0	0	0	0		3	L,
qual .	7	2 %	3	9	0	0	ಾ	0		Ş	15%
7	38	8.0	968	d	0		0	0		Š	Ź
m	24.9	29.0	8.6		'n	N	\$~\\\	ġ.		ć ·	\(\frac{1}{2}\)
4	23,3	30.0	0	ď	h	M	γ)	V		7,	24
w	SS	Š	3,	rs	Ļ,	<u>~</u>	Ŷ	<b>L</b>			ğ
9	£	22	S.	CE	٧	حد	n	L		X	Š
7	Ź	â	K	~	<b>\</b>	. J	.J-	V		2	Ê
			***************************************	The second secon	***************************************		***************************************	Annual Management of the Contraction of the Contrac	Annual Control of the	the same and a same and a same a same a	Ž

Ecological Testing Facility Tetra Tech, Inc

1/3/19 MS

or 60 60 60	Page 2 of 3		Medicago sativa Toxicity Bench Sheet	Sativa	<u> </u>	S E E S	Ĕ			Test#	Test # 7204///
STA PA	AT Date/Time (MMI	START Date/Time (MMDDYYYY HH:MM):		E HSH	FINISH Date/Time (MMDDYYYY HH:MM);		i i Z	<u></u>			
Clear	Client/Project:	2. C. S. C.	**************************************	Test Substance:			· · · · · · · · · · · · · · · · · · ·				
	2								***************************************		
Ĉ	Temp	Relative Humidity	Pressure		Numba	er Germin	ated		st es		
Ŝ	Ç	35	æ	<	යා	۵ س	۵	w	2010		
00	4	7	\ \ \ \	76	<b>ل</b>	J	5	j.		Ş	Š
တ	82.1	Ž	3	C6	n	.>	23.	V		2	252
Ç	Š	) ,**	I K	B	<u>٧</u>		<i>&gt;</i> -	V		3	2
h-4 h-4	ä	S.	r Š	0	'n	· Tr	· "	V		4	20%
C,	25 o	î×.	7 7 7	~s	V	5	2	\ \		3	300
ಜ	7	0	7 2 7	્ય	l,	J	t d	V		C.J.	8
7	4 Z	Ş	, K	r\s	ト	س	>-	Ļ		Ş	8
ដ	<b>5</b>	-2 -3 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	Ş	~~	h	>	>-	3		3	3
2		•									
<u>[</u>		1							7		
ಜ್ಞ											
ಛ											
8											
Z											
S											
a											
2								ļ			
									/		
					3		3			*	~

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

2 23  $\approx$ 

										8.2				-											
Average Root Length (mm)		•	رم م			***************************************	ŧ	<b>†</b>			***************************************		22.15	``````````````````````````````````````		***************************************		27.74				7. <b>1000</b>	4.24 2.25		
Root length (mm)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**************************************	**************************************	, and a second s	Ş	40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$	4	3%			3	- Constitution of the Cons	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z	K	***************************************		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			NOODO.
Average Shoot Length (mm)			<u></u>	***************************************		80.2							<u>د</u> د د		·			9			2.5				
Shoot length (mm)	25	7,6	"Anadian	***************************************	· · · · · · · · · · · · · · · · · · · ·		~	5	2	2	S	39		` `	,,,,nopterop.	<u></u>	S	\$	<b>У</b> Э	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	~			,
Seed	quei	7	M	4	m	que	7	m	***	ഗ	<b>.</b>	7	æ	4	ın	gan-j	7	844	4	ഗ	que d	7	m	**	ທ
2 2 3 3		***************************************	⋖					<b>c</b>					u			<u> </u>					Lui				

Data Checked and Approved

Tetra Tech, Inc Ecological Testing Facility Test# HOYIIG

START Date/Time (MMDDYYYY HH:MM);

Client/Project:
NAVIETO NATEON

FINISH Date/Time (MMDDYYYY HH:MM):

Test Substance:
Shirt - AS-OI

Transfer and a second	
CONTRACTOR OF THE PROPERTY OF	~
	1
	•
	ı

·····		¥0.000				
Total Dry Mean Dry	Weight (mg)	85.	4	∾	0 0 0	\ \ \ \ \
Total Dry	Weight (mg)	C. 2	4	4.6	0	8
Percent	Germination	တ	0	03	00	C
Number of Number of Seeds	Germinated	4	4	m	Lr	(s)
Number of	Seeds Planted	6	V	~	6	~
 0	Ž.	⋖	œ	U	۵	لننا

\$S	***************************************	
3740	۵	> C
raiainta	0	2
	ι Si	r-
Light int. ( $\mu$ mol m ⁻² s ⁻¹ )	r.	ć
WHC (%)	3	

	a	<	(inta)	(%)
	2	)	7 (288)	7 (24)
	0	0	0	0
٥	0	0	0 0	0 0 0
6>	7	0	0 3.ps	27.0 29.6 0 2
ĥ	S.	2	29.8 83	29.8 83
u,	4	\$	7 0 8 6 2	30.0
¥.	>	j V		\$ 000000000000000000000000000000000000
X.	>	Ž		750 SIN A
,,,	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Ecological Testing Facility Tetra Tech, Inc

ED_004888_00000097-00258

Page 2 of 3

ient/	Project: ≥≜≦*	Client/Project: AMAVMOO NATTIONS		Test Substance:	tance:	tance:   Sult   -AS- 01						
	Temp	Relative Humidity	Pressure		Ženz	Number Germinated	ated					
~ ~		33	80 	<	ස	Ú	۵	LL.	ZO ES	v.	<u>u</u>	
03	Š		79.7	F	>	1	Ų			2	28	
on.	Ÿ	Ž	Ž	547	T	M	C	<u></u>		Q.	) )	
0	Ç	Š	S F	Ţ	. y	8/3	V)	<b>V</b>		Z.	<u> </u>	
6004 6004	Č	ş. K	T Š	T	Ž.	n	l,	<b>\</b>		Ė,	Ŝ	
ဌ	o Vá	Ž	44,2	ĭ	27	W	W	٧١		3	3000	4
m	Ş	Ş	787	J-	÷	~	S	'n		£2	\(\text{\text{2}}\)	Ž.
14	4 3 4	2	75,75%	Ţ	- >_	, M	h	h		£	Ì	
ដ	ã	2	<del>ن</del>	,	J	77	γ,	ķ		Ź	3	ì
/ 9												
<u>~</u>		/										
,												
<u></u>												
					a							
73			Ĵ									
72				/								
73					/							
74												
72												
76												
27										/		
8						w.co.						•

Tetra Tech, Inc Ecological Testing Facility

im) Average Root Length (mm)			4					N. C.4				***	2.5.5	000000000000000000000000000000000000000				TO O				2 Sommonous and a second secon	4	4.04	4.64
Root length (mm)	5	5	2 5	J.K		60	70	22	. ,		Q.	9	S			03	25	<u>J</u>	42	4,2	Ť	2	*		M
Average Shoot Length (mm)		-	الم د د د د د د د د د د د د د د ا د ا د ا		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	***************************************	1	رب د د		: 3	***************************************	8000 40 11	- - - - - - - -	: 8			<	\$ \$\$					4	4	<u>4</u>
Shoot length (mm)	in.	000	80	3	900000000000000000000000000000000000000	0	82	a U	9		i de la companya de l	2	ï			95	080	3	Ţ	t A	Q J	Ñ	3	Ġ.	35
Seed	વન્ન	7	m	4	m	q	7	m	4	w	èmi	7	m	4	ഗ	gj	7	m	4	ហ	émi	7		æ	w 4
ğ			₫					as					·······					۵						ui	w



Tetra Tech, inc Ecological Testing Facility Test# TCO4#3

Page 1 of

START Date/Time (MMDDYYYY HH:MM);

Client/Project:
NAVLANO NATER

FINISH Date/Time (MMDDYYYY HH:MM);

81/61/21

Test Substance:

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	۵	Š
	ဝ	2
(RS) 44	ය න්	
Light Int. (µmol m² s¹)	8	<b>4</b>
WHC (%)	ō	

Ĉ	a E *	Relative Humidity	Pressure		Numbe	er Germin	ated	***************************************	***		
	2	38	æ	<	00	U	۵	لنة	Notes		e E
0	Î	2		0	٥	0	0	0			8
£4	Š	25	3,	0	0	0	Ö	0			7
N	4.5%	0,2	9,52	(A)	0		O	0		Ž	8
m	77	32.0	29.8	4	4	ğ	4	4			0 2
a	23.2	0	φ γ	4	. Ą	4	M	4			Z
ហ	Ŕ	O,	8		<b>V</b>	,000.0 ,000.0	V	J		1	5
ယ	\$ \$	S, S	Ź	V	(A)	Ž	5	>		1	S
~	ć	83,0	Š.	V	<u></u>		L	J			É
					***************************************		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE OW				**************************************

Data Checked and Approved NY

Ecological Testing Facility

Tetra Tech, Inc

2014

Page 2 of 2

Approved	
9	
C C C C C C C C C C C C C C C C C C C	
ř	

START Date/Time (N	START Date/Time (MMDDYYYY HH;MM); QLY   18		FINISH Date/Time (MMDDYYYY HH:MMM):	te/Time (	Ž	DYYYY HH:MW	<u> </u>		8	***************************************
_	CATANO NATION		Test Substance:	tance:	C 291-02	d				
	Relative Humidity	Pressure		Zanz Zenz	Number Germinated	paje		\$ 5 to the second	2,50	
**********	S	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	<	ဆ	U	۵	i.i.i		0	<u> </u>
	2	Ã	<b>6</b> -5	L	y	<u>(</u>			ź	3
	2	K	<u>.</u>	V	<b>)</b>	<b>\$</b>	.9-		Ž	3
	0%	5	<u>ا</u>	b	2200	\$	J		3	3
27.97.03.00	7.	24,20	Ŋ	Ŋ	. T.	V	nga.		H	7,00%
į	0, 48	4 4	V)	V	2	V	2		3	300
\$	2,0,0	7 87	-	S	Ť	ln			24	8
1	50.0	Ž Ž	·	1	7	<u></u>	3		8	Ġ.
	24	¥ Ž		<b>₩</b>	Ţ	West	>		3	3
		Y.								
1			***************************************							
		/								
			_/_		· conconon·					
			/		~~~~~~					
							,			
					<b>1</b> 000000000000000000000000000000000000					
					************	3s.				_

Tetra Tech, Inc Ecological Testing Facility

ED_004888_00000097-00262

	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
*******	S			
**********	2	7	o y	,
	<b>3</b>	1.	~ ~	<b>t</b>
	>>>	1	<u></u>	*
	Q	1	\$	•
********	2		Z	
	53	~	× ×	
	3	·····	2	چ پ پ
	2			
	<u>``</u>		R	
	<u>~</u>		5.	
	<b></b>	! *		***
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	^ r o
	Ş	į.	2	3
	-management		**************************************	
*******			5	
	3		∵	
	\$\frac{1}{2}		Ç,	2
	\$ \$			•
	<i>y</i>		Ş	7
	3		\$	
	~ \$	4	2	V C
	\ \?		\ \ \	
	, 0		3	
	Bases		***	

Data Checked and Approved

2014

Tetra Tech, Inc Ecological Testing Facility Medicago sativa Toxicity Bench Sheet

START Date/Time (MMDDYYYY HH:MM);

Page __of 2

FINISH Date/Time (MMDDYYYY HH:MM):

81/61/21

NAMES NATION Client/Project:

Test Substance:

Mean Dry		Ф 	m .^	~ o`	o N	4
Total Dry		7 7	4 œ	 o	6	ŗ
Percent	Cermination	0	O F	07	09	C
Number of Seeds	narpunao	4	đ		M	4
Number of	Secos Flamed	6	↓	У	↓	V
8 0 0		⋖	മ	U	a	نفة

Parameter	ā [Day.
(35) Ha	- K	
Light Int. (µmol m² s²)	Z.	4
WHC (%)	Z	

	3)		£-	_	l,		L	ş	~\$
ļ	<u></u>		Z.	Z	 6.4 	<u>~</u>	8	à	\ddot{z}
	n			2		2			
\ { } { &	ຼົ ວັ								
		i		0			M		
nated	۵	0	0	NOONSON.	d	67	M	M	M
r Germir	U	0	0	0	.,,,,,	anas		* ************************************	98,,,,,
Numbe	කා	0	0		ġ-	*	>	>	<i></i>
	4	٥	0	Ŋ	4	4		J	J"
Pressure	Cili	6000000	>	2	60 60	ς (γ	ಭ	5.6%	×
Relative Humidity	~~~~ ~~~	2	Ş	Ġ.	0,	٥	?	9	×
Temp	2	2	ar (1)	ţ	*	2,4	r Š	/ K	<u>ب</u> ج
Ê	ŝ	0		7	ന	4	ഹ	ယ	<u></u>

Ecological Testing Facility Tetra Tech, Inc

FINISH Date/Time (MMDDYYYY HH:NMM):

START Date/Time (MMDDYYYY HH:MM):

Page 2 of 2

			(i)	3	282	Ş Ž		Ŝ	2	3	3													
		***************************************		2	Ş	2	H	\$	1. J.	£	3													8
		***************************************	é Š																					
			LLJ	M	M	M	ന	Lu	M	حر.	٠									,	/			.,
я	***************************************	ated	۵	ev	M	M	m	m	W	M	M									/				
7	جَ چ	r Germin	O U		Moosu?	***Obeyd	<s< td=""><td>(6</td><td>N</td><td>,,,oto-mail</td><td>esseries e</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></s<>	(6	N	,,,oto-mail	esseries e													
anco.		Numbe	æ	3	.	>	-2-	.3***	÷	ナ									/					
Tact Suhes	Sic-Asi		<	J	**************************************	94000 1000	Ţ	-3"			<i>29</i>							/						
	***************************************	Pressure	D.C.	V	3.5 \$4	K K	**************************************	62 62 64	7,52	Z Z	<u>ئ</u>				/									
	ANATON NATION	Relative Humidity	(%)	Ş	0	Š	0 !3 !**	0 0	0 \$ \$	08	<u>0</u>		/											
Project:				Ź	<u>ب</u> چ	É	\ \ \ \ \	.4 Z	~ ~		K													
Client		-	<u></u>	œ	ರಾ	9	600j	2	М	eori sel	r H	 Ф	Ę	<u>е</u>	ಭ	70	7	77	R	22	22	72	7	80

Ecological Testing Facility Tetra Tech, Inc

Page Of 2

ŝ	Seed	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
	6-c-	9		- 9	
	N	î.	*	~ ~	······
<	m	~	t	0 /	4 p
	4	0,9			
	w.	0000			
	ę-m²	\$		- C 3	
***************************************	7	S	······································	Ţ	00.00 FT
a	m	8	い く い い	~~	^
***************************************	**	S			3
	ហ	1	•		-9
	food	ನ		4	
	7	***			£
w	m	#	^ 2		>
	벟	***		300-	
L	ហ	***		00000	*
	dosej	63		S C	1 to 1 to 1 to 1
	7	Y.		\$	1/3/19 7.5
i	m	6.4	D X		
	4	•		**************************************	5 5
	រភ			***************************************	ą
	dood	S Y		4 N	
	N	S		<i>!</i>	
السا	m	S	'	S	*
	*	\$			
L	m	ŵ	•	***	***************************************

Control Test ID:	1404188	***************************************	Start Date (MMDDYYY): 12,			End Date (MMDDYYY): 1	8 78 77 1
Analyst: 1880	······································		Client: NAVAJO NAT	ONATION		VVCIQIIIIQ DAIC (IVIVID)	87.
***************************************		⋖	a :	S	O); (4)	
O TS e	Replicate	Weight of boat		of organisms	Number of		Remarks
			6	(mg)	Ç Ç	(D)	
Crosses	d.coc	3 22 6	な 2 2 V	Š	<i>~</i>	2	
	2	25.42.0	_ 3		A.	4,13	33333333
Ž	ന	75 Z Z	Q V	œ œ	4		
 	4	75,00.6	(4) (2) (2) (3)	,	J00000	3 '	
	u"	36560	12660.3	2 4	. Ja	2.0.1	
	sp.mo	? ? ?		~	M	7 5 6 7	
	ď	r C	ク・タイング		4		
2 S S S S S S S S S S S S S S S S S S S	n	2453.0	7 4 2 7	1	4	2 2 2	
:	4.	241.8	ر 0 س	o, 7.	c 200***	* ·	0-y-00000
	ഹ	ر ج ج	4 7 7		- John State of the State of th	- S	***********
	4,00	47538	2 2 2 2	r M	¢,	0.925	***************************************
	2	Ž Ž	J S S J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N		00000000
2805	m	٥. 3 3 3	J 000000000000000000000000000000000000	Ť	2		000000000
	*	\$ \$2 \$2	.T.	100-00 CAC	d	ر د	00000000
	ហ	7494,4	7	0.5	0	<u> </u>	***************************************
	4 ~~	5. 88. 7.	9 9 8 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ð	2.925	•
	7	23083	へきへへん	F. S.	~	3,25	0000000000
Š	m	0.336	\$ 60 % \$ 50 %	- Q	d	œ.	ricepion 6533
•	4	5535	7 7 2 2	£ 5	2		85/888888
	ഗ	25.63	% 0 4 5 4	.	٥	0	00000000
	~	7.28,7	2 2 2 2 2	7.52	- Agree	۵ څ	
) 2 2 7	~	٠ ٢ ٢	- 3 5		Ť	512	
Ž	m	26316	4636.3			*	
\ 	4	£ 335 K	بر رو رو	-	~	50	•
	S	3 2 3 3		4	4	ره د د	
u E G	4						
	മ						0000000
00000000000000000000000000000000000000			**************************************	***************************************	***************************************	***************************************	000000000000000000000000000000000000000

Control Test ID: 12-04	TEXIDS		Start Date (MMDDYYY)	MM): 12/4/18	2977	End Date (MMDDYYY)	W): 12/19/18
Drying Temp: July 16	"		Drying Time (HH:MM):	M); 2455.		Weighing Date (MMDDY	
South Street			Client: NAVATO	20143			***
		8		* ***		200 mm	8
		<	m Sy the	4 M 10 10 10 10 10 10 10 10 10 10 10 10 10	O		00000000000
	Replicate	Weight of boat			Number of		Ten a X X
		ÔE)	(mg)	Ö	organisms	, D	
Š	фоо	£'0£h7	へ、そ、ストペ	, 2	A.	~~	***************************************
> = = 0	C	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 W W W	F	đ	 	***************************************
Ž	m	i S S	い で で み	4,4	unganaki.	\$	
	4	752.4	9 % % S	_*	643	1.861	***************************************
	U?	72 27 27 27	タン 0 シン 0	~ ~ ~ ~	÷	3.325	900900
× 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ŝœ	4 4 2 2	Ç T X		V	2.38	
i Ĉ	C)	220	ろうないな	4	h	Ç	5000-80000
	ణ	, \$\frac{1}{2}\text{CK}	ر الم الم الم		4	520	88888888
ž.	**	5. Z. Z. O. Z. Z. Z. O. Z. Z. Z. O. Z. Z. O. Z. Z. Z. O. Z. Z. Z. O. Z. Z. Z. O. Z. Z. Z. Z. O. Z.	\$ 100 CA	o n	Ľ	oc r	3000000
	រោ	* B350	7	• • • • • • • • • • • • • • • • • • • •	Ż	М.	
2 2	\$	7,02,07	- - - - - - - - - - - - - - - - - - -	9.72	S	4 5	
\$ \$ \$ \$ \$ \$ \$	a	7224	رة م م م	V,	tr	~~	
Š	ന	252	ر ا ا ا ا ا ا	4	4	C M	
A 5 5 5 6	য	7645,4	4 0 0	*	S	-	
	យ	- At 30	7.3674		Ą	3 4 2 5	
	şm	7.62	\ \ \ \ \ \	æ K	es.	70	
i Ž	~	2002		, v	- C		
Š	m	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ようころ	ņ	7	ls Ls	ососороссоо
3	Þ	7533.7	7 2 2 3 4 4 7		2	\ \ \ \	000000885
	m	8. 2. 3. 5. 8.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	Ţ	ر د د	
	decer.	2570	ふるいろ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~	- 32°-	
) } \$ 5	7	*376.7	267.0	26.3		4.06	
Š	m	S Ž		~	Ž	S	
888800000	4	7 2 7 8	2 2 3 3 3 3 3	 N	7	lr o	
	w	73057		~ ~	ţ	~~~~	
2000	∢						00000000
	Φ	ooooooo				00000000	,

2017

Control Test ID: 14 CH (08)			Start Date (MMDDYYY): 12, Diving Time (HH.MM): 9#MR	Start Date (MMDDYYY): 12/4/18 Drving Time (HH:MM): 94/RR		Weighing Date (MMDDYYY): (2/1	W: 12/19/18
Analyst: (My)			Client: NAVAGO NA	NATION			
Test D	Replicate	Meight of boat (mg)	Dry Weight of foil and organisms (ma)	B-A Total Dry Weight of organisms (mq)	C Number of organisms	Mean Dry Weight of organisms (mg)	Remarks
S-4-18	7 2	24716 2330.5	2474.5 2548.1	6 3	2	2.95	
É	3	22 42 42 42 42 42 42 42 42 42 42 42 42 4	2 2 2 0 2 3 4 4 5 1. 6 2 3 0 1. 8	5.9	444	1.525	
Sid-FR-0	7 2	222	23.41 25.51 5.55	12.8		{ \\	
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	w 4 w	247.55 247.55 255 3	258.4 2965.6 209.7	L 2 4 C 4	4 + + + + + + + + + + + + + + + + + + +	4.455	
Son-TP-01	1 3 3 4 4 7	2005.9 2481.8 2734.4	0 2 W V 2 4 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4~7~	2.9	
5 F TS	2	2,00,0		7 7 2	4		
Ş	3 8	2,000 2,000	8.6126 8.6136 8.6136	2	7.7.7.2. - 2.7.7.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	28. 4 28. 4 4. 4	
5-55-15S	2	で. され え	3.0% P.6 3.0% P.6	7.85	2	\$7.7 5.7	

4 6

> 92.0gc 3.63.75

(*) T က Æ, മ

Z 003×

2017

Blanks

Amalizati & BA	*		Diving Time (HH:MM)	. " "	***************************************	weigning Date (mwuu	
Analysi. MAS		70					***************************************
Test ID	Replicate	Meight of boat (mg)	Dry Weight of foili and organisms (mo)	P-A Total Dry Weight of organisms (mg)	C Number of organisms	Mean Dry Weight of organisms (mq)	Remarks
9-55-TJ	4	23783			2 2 3	2,4	
3 7	7 60	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4250.0 43508.3	12.5		2.625	
^ 2 2	4	3.50EE	$ \mathcal{L}_{i} $	4	3	~	
***************************************	S	25312		8	m	6.23	
So,1-36-03	g	202	7.20%	7		8	
Č	7	25.0	<u>.</u> 2		lo c	200	
2	0 4			4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	mmanathanamanaman tag	444	
	0	9467.U	2 H 6 4 . S	8 4	n	2.7	
\$7.75 C	ţ	9 5 6 9 9	7508·4	4	4	58	
3	2	~ 3530, s	25353		L.	7.62	
	m	- E978	Š	ğ. 3	~	- 2	
<u></u>	4	32%.6	4556.0	4	5	2	
	ឆ	3567.3	32,036	8	M	1.967	
4 4 4 5 5 5 5 5		<u> </u>	2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7	Ą	5	
	2	4.7214	25.5	8	٠~٩	3	
		320	2000		4	22.2	
2		727					
	ທ	2130,5	الم الم الم	85	0	C	
\$ \frac{1}{2} \left(\frac{1}{2} \right(\frac{1}{2} \right) \right) \right(\frac{1}{2} \right) \right(\frac{1}{2} \right) \right) \right) \right(\frac{1}{2} \right) \right) \right) \right\left(\frac{1}{2} \right) \right\l		9 7 8	J (φ. 0.	4	,	
TO	7	2244.0	\$ \$ \$ \$ \$	27.2	~	œ.	
		y CE	7 7 2 2 2	4	4	9.	
^ > > >		47874	2 2 2 1	7	2	4	
	ಬ	6552	メントン. ス	2. 6	C	0	
u Super	<						
, 2 2 5 5 5 5 7	<u></u>		ww.000000				

Data Checked and Approved

2017

Weight Data for M. sativa Root and Shoot Growth

Weighing Date (MMDDYYY):4/24/3	Mean Dry Weight Remarks of organisms (mg) 0.825 0.65	25 22 48 48 48 48 48 48 48 48 48 48 48 48 48		
Weighing	S visus	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
M): Julk	D-A Total Dry Weight Nu of organisms org	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
Drying Time (HH:MM): 34 K	Dry Weight and organia and org	23845.8 2384.8 2384.8 2384.8 2384.8		
***************************************	A Weight of boat (mg) 2549.9 2555.0 2955.0	2200.1 2367.9 2277.3 2010.8 2368.0		
7,0	Replicate	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<
Drying Temp: 100°C Analyst: 2000	Soil-As-al Row7K	Soil-As-or		 20 20 20

Tetra Tech, Inc. Ecological Testing Facility

S T T
<u>5</u>
Ž Ž Ž Ž
<u>.</u>
Bays
Zea

Test # 1204077

START Date/Time (MMDDYYYYY HH.MM):

Page 1 of 2

9

Client/Project:

White warran

FINISH Date/Time (MMDDYYYY HH:MM):

Test Substance:

99 35 V <u>ت</u>ا 9-(0) à <u>~</u> 0 Light Int. (µmol m² s¹) Parameter WHC (%) HA (SU)

1.54 : 13th

ć	Number of	Number of Seeds	Percent	Total Or	Mean Dry
2.	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
⋖	₩.		ß	**	27
മ	V	V	٥	* **	
U	V	V A	٥	7,635	đ V
۵	*			しなか	
LLI	V	V	20	222	

,		· · · · · · · · · · · · · · · · · · ·	mmam	ş	province	ķeamar.	*	q.a	y
i	2	Z	72	G	3	23	Š	8	É
	V3					Ž			
: 9 : 2						0/80g/0 8/13/875			:
	ننة	O	Ŋ	0	٥	r j	(V	\ \
ate c	۵	۵	0	0	٥	m	>		urt.
r Cermin	U	D	٥	0	0	2	<u>.</u>	V	L-s
g Lung	a	0	٥	ρ	٥	4	V	<u></u>	L
	⋖(٥	٥	Ø	٥	(-3	7	>	J"
Pressure	00 T C	hommono	2	2	<u>م</u>	29.9	20	8	(K
Relative Humidity	8	3,0		0		28.0			
Temp a a	2	2	X	4 3	J Z	23.6		\$ 75 \$ 75 \$ 75 \$ 75 \$ 75 \$ 75 \$ 75 \$ 75	4
2		0	e	7	m	4	n	ω	~

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved <u>S</u>

STAR	T Date/Time (START Date/Time (MMDDYYYYY HH:MM):		FINISH Date/Time (MMDDYYYY HH:WM):	te/Time	A MODE V	Ë	ŝ			
Cllent	Client/Project: NAvAnu A	MANAN MATERIA		Test Subsi	Same:		3	***************************************		•	
i	dwa_	Relative Humidity	Pressure		Numbe	r Germin	ated	***************************************			
è S	C	16	Ţ,	4	œ	۵ ۷	۵	LLJ	Zo So So So So So So So So So So So So So	CO CO SO SO SO SO SO SO SO SO SO SO SO SO SO	© 2000 2000 2000 2000 2000 2000 2000 20
с О	Ž	2,4	¥	¥.	V	Ş.	J	↓	Š	Ž	22
cn.	<i>لة</i>	2	3 5 4	ľ	V	5	"	V	ŝ	3	ž
2	K	ා දූ	K S	7	6	\	٠	t _o	3° %	2	3
/ #											
짂											
Ħ											
## ##				\$							
ű											
2			/								
2											
<u></u>											
5						2			***************************************		
70					<i>T</i>	/					
73						/	,				
2							7	Á			
23											
Z											
23										· · · · · · · · · · · · · · · · · · ·	
52											
23											/
ά									-		

Tetra Tech, Inc Ecological Testing Facility

Page 2 of 2

Ē							***************************************					***************************************	***********	***************************************		***********	***************************************	annon		***************************************		ð árriðannann	annanann Arth		***************************************
Average Root Length (mm)				} ;; \$		٧		8					4					2 2					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Root length (mm)	500	3	<u></u>	Ŗ	**************************************	37	· K		K	~	<u> </u>	\$		3		380			, CX	***************************************	12	Z,	(X	146	Č
Average Shoot Length (mm)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>7</i>	<u> </u>								· · · · · · · · · · · · · · · · · · ·	S.				*		•			, , , , , , , , , , , , , , , , , , , ,	7 8		
Shoot length (mm)	ţ	9	Ç	7	***************************************	<u></u>	5	K		Z	Č	Z	CSC	2		1		ž	282		Ë	r K	Z	Ź	7. C.
Seed	émi	~	m	4	ហ	Soci	7	m	a	v	good.	7	rî	<	n		~	m	**	រវា	***	r	m	**	IJ
æ			<					©				••••••	U	,,,,,,,,,,,				۵					LLJ		

Data Checked and Approved

Zea mays L. Toxicity Bench Sheet

FINISH Date/Time (MMDDYYYY HH:NMM);

4 3 3

Client/Project:

START Date/Time (MINDDYYYY HH:MM);

Page of Of

350

Test Substance:

S-785-138

		·····				
Mean Dry	Weight (mg)					
Total Dry	Weight (mg)	n 9 9	2	Š	30	0450000000
Percent	Germination	3	3	8	9	C
Number of Number of Seeds Percent Total Dry Mean Dry	Germinated	7	e^	Strongenon and	~	S
Number of	Seeds Planted	V			V	V
	2 2	ব	ක	U	۵	w

The second secon	ä	àe Ca
	0	p
	ю С	V,
Light Int. (umoi m² s²)	Ę	90 J T
WHC (%)	C	

	<u></u>	Ž		8	3	2	\$	B	Z
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$						Z			
\$ \$ \$	2002								
	ш	0		0		3			
ated	Δ	0	0	0	0	~~~	~	, rK	7
r Germin	5 1	0	0		0	4		- >	
Number	ස	0	0	0	0	^	Ŋ	*^	(M)
	≪	9		0	0	d	4	C(CA
Pressure	ĵ.	, dans seesan aboungs	Z,	9			Z. Z.	\ X	a.g.
Relative Humidity	(%)	2	Ş	2	0), 6 12/4/18 28.0	22	0.28	0
Temp	3	276	Y.	4	2	, , ,	8	5	الا ئ
È	ŝ	0	gard	7	m	9	s.	ی	<u></u>

Data Checked and Approved

2014

Ecological Testing Facility Tetra Tech, Inc.

ED_004888_00000097-00275

ZAR.	T Date/Time (START Date/Time (MMDDYYYY HHIMM):		HINE ROHS ROHS ROHS ROHS ROHS ROHS ROHS ROHS	ite/Time (MADDOW	<u>≥</u> <u>∺</u> }				
lent	Client/Project:	NATES -	***************************************	Test Substance:	o c	\$-\$					
Ž	Temp	Relative Humidity	Pressure		Numbe	Number Germinated	ated			\$2000 \$2000 \$4000	a a
	0 3	(%)		۲ (m '	υ į	<u>a</u>	u,	3	200 200 200 200 200 200 200 200 200 200	
∞	Ž	3.5	K	~	N)	C)	0		2	<u> </u>
o,	ć 168	0.28		6	N	3	~	q		9	2
2	ر ې	Ŕ	の 覧	rs	r	***************************************	ત્	0		2	23
<u>~</u>											
겉											
m m											
**											
ų		7						***************************************			
က္											
P-											
138				/							
o و					7	,					
20											
73											
77							/				
3							·				
22											
X											
S S											
22											Ž
ç									······································	***************************************	

Tetra Tech, Inc Ecological Testing Facility

Test # HOWING

Bth (mm)				••••	••••						- 24		•••••												50000
Average Root Length (mm)		<		<u>)</u>					>>> } } >>			(• •)) > ~			***	<u> </u>		
Root length (mm)	-22	~	2	poodspreedoorres,	description	771	0	5#	***************************************	000000000000000000000000000000000000000	\$	8	105	07	Changes and a second	2	50	Z W	Rossonwood	\$0000000000°	9,000,000,000	www.	0*************************************	**************************************	***************************************
Average Shoot Length (mm)		<	\ 				(**************************************					S			. **	**·	~	3				2		-
Shoot length (mm)	\$ \$ \$ Z	7,00	^	tunommun	a de la constante de la consta	(m)	, C	\$7	Čones (September 1987)		S	22,22,22,22	252	90 Çi	***************************************	787	77	S	76	000000000000000000000000000000000000000	***************************************	***************************************	***************************************	âreassassas de la companya de la com	
Seed	_t enj	7	m **	4	m	post	N	m	7	ທ	ŝm}	7	m	マ	មា	a4	7	m	7	ហ	****	7	m	4	
Ž.			⋖				· · · · · · · · · · · · · · · · · · ·	æ					U					۵		ż			w		

*- Seed had not popped through the soul, but was found germinated on break-down

Tetra Tech, Inc Ecological Testing Facility

Zea mays L. Toxicity Bench Sheet

Test # TEA IS

START Date/Time (MMDDYYYY HH:MM);

Page of

2 9

Client/Project:

FINISH Date/Time (MMDDYYYY HH:MM):

Test Substance: $S_{\text{UI}} = 200 - 02$ NAMES SERVE

***************************************	à	ŭ	Ň	<u>(</u> 2	
20000000000000000000000000000000000000	à	0	<i>○</i> %	Ž.	0
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		îs, Ha	Light Int. (unol m² s²) 94.	WHC (%)
	Mean Dry	Weight (mg)		· · · · · · · · · · · · · · · · · · ·	i de la companya de l

Weight (mg)

Germination Percent

Number of Seeds Germinated

Seeds Planted Number of

8

<₹ **@** \Box

Total Dry

2 ****** <u>G</u> 8,3

Č	Temp	Relative Humidity	Pressure		Numbe	er Germir	iated		\$ \$ \$?	
ŝ	2	25			æ	v	۵	££.3	200		l)
0	2	7	***************************************		٥	0	0	٥			
ş.e.i	7	\$	2		٥	0	0	0		3	Ĭ
2	Š	0	3,8	0	0	0	0	0		2	8
m	4 . 4 . 5 .	0.0	89 67		d	0	0	P		3	22
4	23.6	2 7 7	6 0.	3	4		4	, , , , , , , , , , , , , , , , , , ,			2
so.		% 0	Ą,		· 3-	J		la.			Z
Φ	T	2,5%	Ž		<u></u>		-3-	ð			S
P~	K	2	Y.		`J	<u>"</u>	<i>.</i>				E

Ecological Testing Facility Tetra Tech, Inc.

page 20£ 2

***************************************	328	***************************************		9							
Clien	Client/Project:			Test Subs	t ^a ncë:						
	24.2	NAVAS NARAM		4	Sol 200-02	ر د د					
Š	gwa ₂	Relative Humidity	Pressure		Numbe	r Germin	ated		\$ \$ \$	***************************************	ļ.
2			SU SU SU SU SU SU SU SU SU SU SU SU SU S	≪(മ	U	۵	لغنا	2 2 2	201111	3)
00	<u>.</u>	0	Y X	æ) [*]	Y Y	۳	ميده کيد		S	Š
m		, , , , ,	9	J	.3	.>-	5-				\mathcal{B}
2		2	6. 18.	-	.>-	Ţ	<u></u>	5-		Z	3
6~4 6~4											
Ç											
m											•
꺽											
ry L		/									
r C											
<u>ا</u>											
ಜ											
on On											
2					/	/					
73						/	/				
22							/	,			
23											
Z,											
23											
28											
2											
×											

Tetra Tech, Inc Ecological Testing Facility

Test #7# 0/103

Seed	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
			77	
	28,		474	3
	7.08	<u>}</u>	- 5	· ·
	anno anno anno anno anno anno anno anno	<u>.</u>		4
	50		36	*
	23		ir T	{ { {
~	2		2	
genda	3		C C	
ស	***************************************		**************************************	*
pand	S N		728	
2	な		13	· ·
m	ä		T C	€
~	S C		`. ~~	<u>`</u>
ഗ	assessand			
g\$	6		329	
~	S	*	7.	9000000
Pr's	79	<u>و</u> م	\$ 200 E	<u>د</u>
4	Š		357) - - - - -
10	***************************************	*	Ann Garante Sprang	***************************************
g.m.g			\$	
~	i K		437	:
m	2 2 2	Ş		<u>S</u>
খ্য	~	· · · · · · · · · · · · · · · · · · ·		• • •
w			compositions.	

Data Checked and Approved

Tetra Tech, Inc Ecological Testing Facility Zea mays L. Toxicity Bench Sheet

Test #

FINISH Date/Time (MMDDYYYY HH:MM):

8 N 8

Client/Project:

START Date/Time (MMDDYYYY HH.MM);

page Lof 3

WANTO VAICE

Test Substance:

Soil - 2th - D

gundudun	,	}				
Mean Dry	Weight (mg)		it is a second	r T	3	
Total Dry	Weight (mg)	ż	05.30	6	0 5 5 5	0. 3.
Percent	Germination	R	8	2	9	3
Number of Seeds	Germinated	J	V	\$_~:	J	3"
Numberof	Seeds Planted	~	V	V	V	V
 2	 } }	<	<u> </u>	v		LiJ

<u></u>		A. W.
o so de se como se con se se	â	à
	0	ë ë
ph (su)	e H	Š,
Light Int. (umol m.2 s.1)	Š	Ž
WHC (%)	と 36	

	U 	Z	Ĭ.	8	v E	2	Š	Š	ŝ
\$ 500 mm	6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2	2	Ź	ž	Ž	2	\$	Ş
6 4 8	2 2 2 3 3 4 3								
	l.i.i	٥	0	0	24.2.4	d	Ţ	حد	S
ತ್ಮಣದ	۵	0	0	0	; } }	4	200	۳	J
r Germini	w			0	1		(_		
Numbe	æ	2	0	0		V	\	V	<u>پ</u>
	ď	0	0	٥		4	J	>	J
pressure	20	'annonement'	2		8,	67 67	9	Š	K
Relative Humidity	2		2	2	0,0	0	Ž,	2	3
Temp		2		S S	24.9	23.6	ã	5 3	R
Ě	2 2 2	0		~~	m	4	ın	v	P~

Ecological Testing Facility Tetra Tech, Inc

Page 2 of 3

Test #14/4/04

FINISH Date/Time (MMDDYYYY HH:MM);	98 - SS	Test Substance:	NAWASU NASTAN SOII - 200-01
START Date/Time (MMDDYYYYY HH: MM);		Client/Project:	NAVATA NATURA

																						Z
	¥	Š	3	2						•												
\$ 00 mm	CIPILITIES	2	Ą	2	0																	
\$ \$	^ ည ဘ								•									/	/	/		
	w	S	J	**************************************													/	7				
ated	۵	J	J	wy.													£	-				
r Germin	U	V	3 5	ł-								***************************************			/							
Numbe	ထ	ト	<u>.</u>	4										/								
	ď	3-		"										*******				,				
Pressure	(0) (0)	٧ ق	9	Z						/	7	***************************************		***************************************								
Relative Humidity	8	0. Vå	\$	â																		
d d d e a	Ç	K	X	k Sa														***************************************				
č	2 2 2 2	œ	on.	유	grad grad	2	۳. س	~; ~;	ដ	ņ	Ç	8	ವ	೭	77	7	23	g	Ŋ	8	5	82

Tetra Tech, Inc Ecological Testing Facility

Test # Howle

	Seed	Shoot tength (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
	ę~4	12/18/10 18/18/18/0		0 6	
	7	ا د د		557	
	rr3	V ~	<i>/ / / / / / / / / /</i>	202	ح ج ي
	4	0 7) }	0 2	
	m	, and the same of	i	0000000000000000	
	ę‡	5 7		507	
	7		30 A	Ö	
	m			097	
	 eg	24.0	· .	05~	
	ws	587	3	5.7	**
	\$00¢	0		0 7	
*	7	5		is 9	
	m	52.7		4.4 0	<u>_</u>
	~3			O %	
	ហ	0		00	
	quo4			242	
	7	000		V	tuniff.
	m	000		20%	3
	4	\ \ \ \		05.	
	'n				
	ş-m²	4		I I	
	7	0	1	40	
	5,2,3	1°	Z.		
	*ci	0007)	 •
	un				

Tetra Tech, Inc Ecological Testing Facility

*3

Zea mays L. Toxicity Bench Sheet

Test # Travilor

START Date/Time_(MMDDYYYY HH:MM):

<u>S</u>

Client/Project:

FINISH Date/Time (MINIDDYYYY HH:MM):

<u>\$</u>

Test Substance:

	àe C	pu	V,	j. S	
	۵	0	ဝ ဗော်	J	e
:	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		pH (su)	Light Int. (umol m² s²)	WHC 83

	Number of	Number of Seeds	Percent	Total Dry	Vean Dry
 2 2	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
<	<u></u>	"	S	Š	
	(~	€0	8	V S S	
	v		0	S	
	r	****	S	Š	
	V	•	9	a Sign	

	Temp	Relative Humidity	Pressure		Rumb	er Germin	ated			i gr i gr i gr	ķ
100,000	Ç	8		A	සා		۵	w	2 0 0 0 0 0 0	V2 00 bar 555	Q
	2	•	dynamica	0	0		Ø	0		2	
	Nagy and	? ₩	= <u>;</u>	0	0		O	0		2	=
ا کست	Ž	o R	53.6	0	0	0	0	0		¥	2
48	0	0 67	\$\frac{1}{2}\$				20000	0		ŝ	0
1	m	0	00 07 7	4	4.	erio.	4-			~	25
200	0		K O		6	6	<u>~</u>	********			S
****		Ź	8	-	Ç			4		2	Š
arrest.	S V	2			Ç	6	٠.>	٤		3	Ö Ö

Ecological Testing Facility Tetra Tech, Inc

Test # 74.04/02

Page 20 of 2

FINISH Date/Time (MMDDYYYY HH:MM):

START Date/Time (MMDDYYYY HH: MM): Sand Client/Project:

Test Substance:

,		,,,,,,,,,,,,,,,,	raaaaaaaa~	,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·yoosaanoo***	·y	·,	á	,		,	,	,	y	ç	·	,	,	~~~
ļ		% \$0 \$0 \$0	3	3																		Ž
\$ \$ \$ \$ \$	4888 488 488 488 488 488 488 488 488 48	2	â	2	***************************************															/		
840 by	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3																	/				
	النا	L	\	-														7				
T	0	ブ	S.	·			•									7						
Number Germinated	v	h	L	ト											/							
Numbe	ထ	L	<u></u>	L	•							•	/	7								
	⋖	Ĵ	<u>.</u>	J~									1									
Pressure	(Q) (E)	K	\ \	O K						/	/											
Relative Humidity	8	200	**	0,00																		
Teme G	Ç	ć	Ŕ	4	/																	
Ĉ	Š	83	g	2	#	N N	m	텋	ង	ಀೣ	10ml 10ml	<u></u>	a	70	7	77	73	24	25	92	7	738

Ecological Testing Facility Tetra Tech, Inc.

Average Root Length (mm)			\$	3				3; 3;	y n norm of				C	5				<u> </u>)	*					
Root length (mm)	2	Z	Ş	25	and the second		27.6	¥	* 3	~	9 2	68 C	X 48			4	Q.	3	3	(furnamental security)	2	*	Š	<u>.</u>	X
Average Shoot Length (mm)		8 2 8						7. 66	*				\$		*			Ę	>		*	*	^\ S	>	
Shoot length (mm)	な	Ŗ	S	47	######################################	Š	R	ä	Š	Ŕ	¢	ā	9	8	Ž	307	2	Z	422		Ç		A	3	£
Seed	3 4 4				m	grood.	7	m	ಳ	ın	écock.	7	m	থ	រោ	good	7	m	*	ហ	end (m)	7	m	4	ហ
a a a			<					€					U					0					t.EJ	b	

Data Checked and Approved

20°

Tetra Tech, Inc Ecological Testing Facility

ED_004888_00000097-00286

Zea mays L. Toxicity Bench Sheet

Test # POVIOU

START Date/Time (MMDDYYYY HH:MM):

Page of

7 7

Client/Project:

FINISH Date/Time (MINDDYYYY HH: MIN);

S

Test Substance:

F	*******					
Mean Dry	Weight (ng			こたい		
Total Dry	Weight (mg)	r Š		n	4 3	s V
Percent	Germination	9	8	8	2	C
Number of Seeds	Germinated	۲^				~^
Number of	Seeds Planted		V	(^	V	V
	Š	4	മ	U	۵	LLI

	ນ	<u></u>	Ž.	3	4	02	£	. Z	 (6-5
4 	~~	(~)		- 12	,		5	S	<u></u>
\$ \$ \$	2	\$	\$	3	Ł	£	\$	\$	2
\$ \$ \$ \$ \$	2 2 2		777777777777777777777777777777777777777	***************************************		***************************************			
	لشا	0	0	q		0	Μ	(^	ر/ئ
ated	۵	0	0		a	4-	L.,	\$ ~	√
r Germin	J	0	0	d	o		~C	******	303000
Numbe	සා	0	0	0		***************************************		0000000000	-x000000000
	«	0	q			C.	(1)	124	50
Pressure	er i	000000000000000000000000000000000000000	3	2	80 0, 11	00	\$	K	W
Relative Humidity	×	0.13	2	ů.	2,9	9	5	2	?
Temp	0	27	7.		4	2.3.3	0	Ş	? K
È	ŝ	0	***	N	m	4	រភា	ယ	1

Page 20

Test ## 24104_

FINISH Date/Time (MNDDVVVV HH: MM):	Soil-Fil-01	**************************************	20163 L	ź	\$\frac{1}{2} \text{\$\frac{1}{2} \text{\$\fin} \text{\$\fin} \text{\$\fin} \	n																	
H Date Specified	Substance:	Numb			7	`							/										
A S	Test	Pressure	(gHii)							j													
START Date/Time (MMDDYYYY HH:MM): 요[사](영 : 김이아	NATA OP	Relative Humidity	8	? 4	Ž	° K	 	/										••					
T Date/Time (N	Client/Project:	a E E	ಽ	<u>수</u>	Ś	4. V	7																
STAR	Circut	è	* 8 2	80	o,	<u></u>	 	اسا (بر)	****	ب	ra La	P	80	<u>е</u>	20	2	77	·····	£3	5 2	2 2 2	25 24 52 26 25 26 53	2 2 2 2 2

Tetra Tech, Inc Ecological Testing Facility

Test # Adyllov

2. 2. 2.	Seed	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
	good	707	***************************************	30	
	7	572		~~~ ~~~	
<	m	221	4	0	2
	7	· · · · · · · · · · · · · · · · · · ·) }	approduction and the	\ S
	ın	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_c umod ⁿⁱⁿ s,	
	Šová	77.5		7	
	7	727	\ \ \ \	2.57	
80	997)	77	2		
	4	877		3	
	w			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-
	ňoon	157		51	
	7	Z.	Secretary 1		\$°
Ü	m	7	S	7.9	^
	4	\$	``````````````````````````````````````	2	
	ហ	<i></i>		0,0000	
	k-nd	4 %		27	
	~	307	<	52	
۵	143	8,7	<u>\$</u>	<i>[</i> 5]	**************************************
	4			S.	www.
	ဟ	3	:	03	8
	d-n-Ž	257	3 4	79	
	N	35.7		Ä	en pring notes
ii.	m	Ţ.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00 N	
	7	'occanocaccop's			
	ហ			(management)	

Zea mays L. Toxicity Bench Sheet

Page 1 of

Test # AWOS

START Date/Time (MMDDYYYY HH:MM):

5 6

FINISH Date/Time (MMDDYYYY HH:MM):

NMINDO MATEN

Client/Project:

Test Substance:

	-
	-

	Midron

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	April 100			***************************************	***************************************	**********
Mean Dry	Weight (mg)				?)	
Total Dry	Weight (mg)	78,4	7.2S	05835	280	23.75
Percent	Germination	8	S	000	2	2
Number of Number of Seeds	Germinated	Ý	M	ij	7	!
Number of	Seeds Planted			. _	V	V
C C	, ,	<	æ	v	۵	w

3 d d d d d d d d d d d d d d d d d d d	<u> </u>	à C
rdidiller	0	p
(ns) Hd	r† Φ	M
Light mt . $(\mu mol m^2 s^{-1})$	- 	Š
WHC (%)	r G	

2	0	Ē	lelative Humidit	
(inHg)	E H		(%)	
**************************************	(Consequence)			ंट
J.	\$			0
2	Š		700	
2.9.0	8.87		***************************************	0,67
200	70			30.0
Ø 9₹	\$			23.0
70,7	7			X5.2
Ž,	Ž	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

FINISH Date/Time (MMDDYYYY HH:MM):

| A | | | | | | | | | | |

Test Substance:

| A | - | A | - | A | - | A | - | A | - | A | |

START Date/Time (MMDDYYYY HH:MM)
(2) 44 R
Client/Project:

Page 2012

CASCAL CASCAL

	U 200 200 200 200 200 200	8	3	ر 8			•••••														Ş	Ź
2000	2 D	S	Z	£																		
6 6 6	2 2 2 2																	/				
	LLI		V														/	/				
ated	۵	3	. J-	5												/						
ır Germir	U	7	M	~~~	*										/							
Numbe	മ	Μ	M	M									ı	/								
	<	V	V	L								/	/									
Pressure	000	X	Ş	 Ç	•					/	/	1								•		
Relative Humidity	(%)	ĉ	Ş	0,8			1	/														
Temp	స్	Ŕ	Ź	Ź																		
Ž	è S		ð	e	6~4 6~4	2	rr) r-d	4.4 6.4	ដ	<u>ب</u>	P	9 0	<u>ф</u>	50	rd N	77	23	22	25	78	27	82

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

1	2	Seed	Shoot length (mm)	Average Shoot Length (mm)	Root Jength (mm)	Average Root Length (mm)
2 190 QL7,3 115 4 210 QL7,3 120 [50 1 280 [50 1 280 [50] [70] [70] [70] [70] [70] [70] [70] [7		,	2 2 2		2 %	
3 250 867.3 220 160 1 290 150 150 160 2 225 250 170 200 3 220 200 120 200 1 221 220 200 3 4 65 20 200 3 4 65 20 200 1 172 20 200 3 4 65 20 200 3 4 65 20 200 3 4 65 20 200 3 4 65 200 3 4 65 20 200 3 5 7 10 20 200 3 7 10 20 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	7	© &		\ <u></u>	
1 160 170	«	m	0 15 13	\(\frac{1}{2}\)	750	3
1 2.00 1.50 1.50 1.0		4	0	·	3	Sibooce Woods Stripped
1 290 170 190 170 170 170 170 170 170 170 170 170 17		m	002		25	
2 225 3 226 4 * 9 1 220 2 200 2 200 3 167 5 * 10 1 172 2 200 1 172 1 172 2 200 2 200 2 200 3 167 6 4 65 5 * 10 1 172 1 172 2 200 1 1 20 2 200 3 3 4 10 4 65 5 * 10 6 70 1 15 1 175 1 185 2 200 1 10 1 1 20 2 200 2 200 2 200 2 200 3 3 4 10 4 65 5 5 5 6 6 70 1 10 1 115 1 115 2 2 2 0 1 10 2 2 0 3 3 4 10 4 10 4 10 5 2 10 6 10 7 10		Sood	000		06.7	**************************************
3		7	L-75	() { {	8	
1	co	m	097		252	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5	3	ব	()*	•		
1 120 2 120 3 165 4 65 5 × 10 1 172 2 282 3 × 10 1 172 4 310 4 310 6 4 310 6 5 × 10 7 20 1 1 0 1 2 20 1 85 1 85 1 250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	**************************************	m	466560000000000000000000000000000000000		**************************************	
2 7.20 4 65 5 × 10 1 1.72 2 2.82 3 × 10 3 × 10 4 3.10 5 × 10 3 × 10 4 3.20 1 3.20 2 2.50 1 1.85 1 2.40 3 2.40 4 3.20 5 × 10 5 × 10 6 0 × 10 1 3.20 1 3.20 1 3.20 2 2.50 1 1 3.20 2 2.50 1 2.50 1 3.20 2 2.50 1 3.20 2 2.50 1 3.20 2 2.50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		śwej			0 %	**************************************
3 165 5 × 10 × 25 1 172 2 2-82 2 2-82 3 4 311 5 × 10 3 120 1 320 1 320 2 250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	2			200	*. *:
4	ů.	2	J.		, c	
5 * 10 10 2 282 10 3 * 10 4 31,1 10 5 * 10 1 120 250 3 240 250 4 30 240 3 240 20 4 30 20 5 20 20		**	V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ç	
1 2.82	***	. un			V	
2 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.		good	7		V	**************************************
3		7	73 73		:	
4 3.1 1.2 5 * 1.2 1 1.2 2 2.9 3 2.4 4 1.0 5 1.0 5 1.0	۵	m	0 0 1	**************************************	·	3
2.		7			i,	
1 220 2 222 3 240 4 100 5 100 5 100 1100			~ *		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
250 3 240 4 100 5 3 285		y4	, , ,		\$\frac{1}{2}	*
3874 4 100 5 1 285	···········i	7	i i	* 3	u O	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	w	m			06	2
		4		~ }	2	
, and the same and		m	ls R		C	

ige.

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

"shoot" wesidan

not gorminated towns wereath the soil no

~ S & *

2012

-

ED_004888_00000097-00292

Zea mays L. Toxicity Bench Sheet

Test # 1840b

START Date/Time (MMDDYYYY HH:MM):

Page of M

₫ ፻

FINISH Date/Time (MMDDYYYY HH:MM); 2

NAMES WATER

Client/Project:

Test Substance: Sat. - スロビー02-

Mean Dry Weight (mg)	***************************************		<u>.</u> Z		
Total Dry Weight (mg)	2: 7	* * * * * * * * * * * * * * * * * * *	4.5	J.	*
Percent Germination	8	3	8	3	3
Number of Seeds Germinated	2	V	V	V	ý
Number of Seeds Planted	C.A	V	v		V
<u>a</u>	⋖	മാ	U	۵	w

200 mars and a second a second and a second a second and a second a second and a second and a second a second a second a s	۵	Ş Ş
raidille	O	D G
(#S) Hd		
Light Int. (µmol m.2 s.1)	.J.	104 104 104
WHC (%)	C	

		 				2 0 0 0 0 0 0 0		H
2 CO / 20 CO /		 	J	٥	3			
		 	0	0	0			Ż
	2000	 	0	0	0			Š
700	0		0	0	0		8	Z
	63%	 	Ç.	ç3	٥			0 2
67	- 1	 	4	L	4			ر اح
	ന	 	6	L	J	***************************************		S
		 	<u></u>	5	ン	***************************************		L Š
***************************************	å	 ACOUGLE			۵.			Š

Ecological Testing Facility Tetra Tech, Inc

FINISH Date/Time (MMDDYYYY HH:MM):

START Date/Time (MMDDYYYY HH:MM):

Page 2013

0 0 E

Client/Project:

Test Substance:

	ű	3																		_	
	uJ	J	J-	2000000°														/			
ated	۵	h	١,	٧											/.						
r Germii	u	4	Ł	V.																	
Numbe	ස	h	L	b								•••••	/				;				
	<	6 6 K	L	8		*********						7	<i></i>								
Pressure	iio II	ZŽ	ž	6							/										
Relative Humidity	(%)	્	2	2																	
Temp	IJ	Z	4	Ź																	
č	Çay	80	on	e e	 ==		(M)	64 64	۳ M	9	Ş	ಥ	g H	70	21	22	23	72	72	,	 ?

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

Test# Thullus

8	Seed	19 (WW)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
	~	245		06-	
	7	, ,		222	a
<<	m	722	Ž	\$6.7	Ş
	4	÷	\ \	59	3
	Ŋ	532		092	
	qued	527		4	*
	7	,r^	9	0	4
	m	315		007	<u>ئے</u>
	*	9 [7	,	9,	·
	w	V %		077	*
	~	V S		[S2.454]	
··········	7	Ş	**	6	
Ų	m			. 222	S
···········	*	V	>	* 0 17	3
	'n	03,		0 [7	
	, 4	0			
¹	7	3,50	<u></u>	00000	
	m	(~		\(\forall \)	
	0	7 50 7		25	
	n		>	\ \ \	
······································	good	2,5	*	lo L	
	~		:	8	***
uuuu. Lij	m			000	~. .9
	4	320	o.	0	
	v	(m)			

Data Checked and Approved NV

Tetra Tech, Inc Ecological Testing Facility Zea mays L. Toxicity Bench Sheet

Test# Trouts

START Date/Time (MMDDYYYYY HH:MM):

Page \ of &

8 7 4

Client/Project:

FINISH Date/Time (MMDDYYYY HH:MM):

Test Substance: S近し- MV -OI NAMASO NATON

٤	•
y	·
-	
-	
-	
*	
ľ	•
1	
ì	•
Ĩ	۰
ł	•
-	
-	;
hamman ha	•
-	
*	
-	
-	
ł	

r			********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·········	**********
Mean Dry	Weight (mg				<i>,</i> >	
Total Dry	Weight (mg)	9	3 3 5	Š	۲. ۳. ۳.	, ,
Percent	Germination	2	R	2	3	9
Number of Seeds	Germinated	V	J	3	Ť	V
Numberof	Seeds Planted	(~	(m	£	h	V
ç O	2. 2.	⋖	883	v	۵	w

\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ä	Š
	0	pu
\$ (36)	d Vä	べ
Light int. (umol m ⁻² 5 ⁻³) [29,	<u></u>) 3
***	S.	

č	Temp	Relative Humidity	Pressure		Numbe	Germi	ated		\$.6 6 66		Į.
ğ	2	Z		, ;	ස	ပ	۵	tej	Saton		2
0		2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0	٥	0	0			Z
ęmi	ž	\$	ر م	٥	0	0	٥	0			188
7	Å.	2	9 Ž		٥	0	O	Û		3	3
n	4	0	6	٥	0	O	0	0		£	\ 2
4	7	0	φ Α	4	4-	لہ	7	L			<u>.</u>
w	k	2,0	33 Ç	>)	m	>	<u></u>			S
ယ	K Z	2	V Ž	'n		<i>~</i> √	÷			3	8
7	r Ž	2%	Z	V	, <u>"</u>	\$~\	3	\ \		:	Ŝ

Data Checked and Approve

Ecological Testing Facility Tetra Tech, Inc

Page 含of

2014

Ecological Testing Facility Tetra Tech, Inc

Zea mays L. Toxicity Bench Sheet

Page & of &

2014

Rep	Seed	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
	émit.	22.		2	
i	7	ر بر س	ć	0	
≪	r	\rac{2}{3}	\$. 24	X	
	4	^ ~		~	~ }
6	S	0		L L	
	émi	in R		\ T 	
	7	5	•	4	·····
ca:	m	2		20	3
i	4	7,00	2	2) ; ;
	ហ			000000000000000000000000000000000000000	
	éconf.	2		~	
	7	000	4	2	
U	m	2	S	5	\d 8
i	**		>	*	
	w	* Connection of the Connection		gyadoserrateny.	
	ison)	3		S.	
······································	7	<u></u>		\ <u>\</u>	
 С	m	\$	J.,	50	S
i	7	\(\frac{\circ}{\chi}\)	*	00	<i>'</i>
h (n	T Z		Š	
nu non muit	special.	Ş		~	
.ccmonnail	n	<u>~</u>		G	
LL.	m	S	2	2	2
***************************************	4	05%		2	
	ហ	200		8	

Data Checked and Approved

Zea mays L. Toxicity Bench Sheet

Test # 1104100

START Date/Time (MMDDYYYY HH:MM):

Page Lof

FINISH Date/Time (MMDDYYYY HH:NM); 9

Client/Project

WARSO WEDOW

Test Substance:

S	Number of	Number of Seeds	Percent	Total Dry	Mean Dry
2 V	Seeds Planted	Germinated	Cermination	Weight (mg)	Weight (mg)
⋖	V		2	r	
ω	V	.,,,,,,,,,	2	9	
U	~	- 4	S	7,50	
۵	\$, ^	٥) }
LL.		~	Ş	Š	

þaý	e C	7% c.8	20	g,
		78-3		~
838 c de constante		(ns) Ha	Light Int. (µmol m² s²)	WHC (%)

anom		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						r	······
ļ	2	E	7	8	000		Š	S	Š
4	2		1	3	1		S		
: : : : : :	2 2 2 2 3								
	لدا	0	0	٥	20,000	C)	~	M	W
nated	۵	٥	0	0	0	ganan	******	944.00°	u4,004
Germi	u	ρ	0	<u> </u>	٥	٥	0	*1001100	¥000
Number	ம	0		0	٥		eno _s	**********	
	⋖	0	0	9	0		0	0	0
Pressure	æ	***************************************		3	20.00	8	0? 0?	22	r,
Relative Humidity	8	2	200	2,8	0.22	0.0	ò	0 (2	2
rem cm cm cm		3	5	()	ņ	72 . C.	4.	4	6
è	2 2	0	~	~	m	4	ഹ	ی	<u></u>

STAR	T Date/Time (START Date/Time (MMDDYYYY HH:MM):		FINISH Date/Time (MMDDYYYY HH:MM):			i i				
Client	Client/Project: Client/Project	Ź	9	Test Subs		Soil- 370-01	3				
Š	Temp	Relative Humidity	Pressure		Numb	Number Germinated	ated				
> 8 3	2	(%)	 00	≪.	ದು	U	۵	ш	z S Z	60 60 60 60 60 60 60 60 60 60 60 60 60 6	e E
œ	Z	o it	Ç.	0	©0000	~	٢(Μ.		3	3
Ø	<u>ب</u> ک	, 2,	9		~~~~	M	M	M		2	\$ \$ \$
9	r Y	2	5	,,,,,,,,	M0000	N	٧٨	M		3	으 주 3 3
الله الله الله										×	
q									***************************************		
رم									***************************************		
604 604											
เก ref			/								
Ç											
2ml			/	/							
т СС				/							
S.										6	
70						/					
7											
77								/			
73								7	/		
22											
23											
56											
72											/
0										3	

Test # HOVE

Average Shoot Length (mm) Root length (mm) Average Root Length (mm)	0.4					1.5.1	2			appropriate	9		**				*			***************************************		V6-	>×.	,,,	
\$ 5							~) ~		• ••••••		*		2				4))			Š		>	
40 +	1 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	\$contagood de de la contago de		and a second sec	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ľ	4	**seemandeleff**	Constitution of the Consti		0		*	**************************************			4	0	000000000000000000000000000000000000000	***************************************	2	<u>ک</u>	0	,	
		Ś	2		-	S.						" Account	^		8		500 4 000 .						,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
4,506513	0		· Constitution of	4,4,400,400,400,400,400,400,400,400,400		240	o` *×	***************************************	Construction of the Constr	***************************************	Ç	8	4	8 3		0 97	s S	9	Name of the last o		0	\ \ \	0	-	000000000000000000000000000000000000000
	ş\$	7	m	đ	n	****	7	m	4	ມາ	qu-j	7	m	₹	n	.	7	(43)	4	ហ	***	~	୍ଟେ)	4	t.s*
a a			<					m		7								0					ii.		

Data Checked and Approved A * no "shoots" Lesider seed * shoot, no root attached * * Shoot, xo.

fact and see

ED_004888_00000097-00301

Ecological Testing Facility

Tetra Tech, inc

Š.

Zea mays L. Toxicity Bench Sheet

Test # How of B

START Date/Time (MMDDYYYY HH: MM):

Page Lof

S

Client/Project:

NAMO NATO

FINISH Date/Time (MMDDYYYY HH:MM):

Test Substance:

Rep Number of Seeds Percent Total Dry Mean Dry A Seeds Planted Germinated Germination Weight (mg) Weight (mg)							
Seeds Planted Germinated Germination Seeds Planted Germinated Germination Seeds Percent Seeds	Zean Ory	Weight (mg)			A K	,) •••	
Seeds Planted Germinated Germination Seeds Planted Germinated Germination Seeds Percent Seeds	Total Dry	Weight (mg)	Š	S S	Ø S	Š	V 3
Seeds Planted	Percent	Germination	8	2	2	15000 15000 15000 15000 15000	9
	Number of Seeds	Germinated	b	·y	r	-	₩7
	**************************************	Seeds Planted	V	C	~	V	×
	2	2	⋖	æ	U	۵	ii.i

Brownska		à
	0	E E
ins) Ha	<u></u>	ľ,
Light int. (μ moi $m^2 s^3$)	T.	ž
WHC (%)	g	

ative Humidity	Relative Humidity
œ F	(%)
3 1 2 6 mm	
330	
3000	3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 %	
200	

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approve

Zea mays Toxicity Bench Sheet

Page Aof 2

FINISH Date/Time (MMDDYYYY HH:MM): Test Substance: \$\int \cdot \c START Date/Time (MMDDYYYY HH:MM); NAMES NATUR Ollent/Project:

	<u>n</u>	Q	Ą	ð						T	Y									······	Š	Ź
; ;		S		į	:																Ž	
4 4 4 7 8		2	Ź	-2	****														/			00000
; ; ;	XOLES NOTES																/	/				***************************************
	w	٨	V	<i>ا</i>											•	/	/					
		L,	Ļ	······											/							~
Number Germinated	U	ŧ,		¥										7								
Mumbe	മ			Ţ								/	7									
	¥	'n	J.	×							/	7		•					***************************************			
pressure	OO E	Ç	*	3°, Z					/													
Relative Humidity	(%)	Ş	2	2																		
d d d	ũ	3	\ K	%		/																
ě	> 0	00	σn	Q.	/ ~	22	,~; (17)	다 무	r L	35	54 50	<u></u>	ę.	20	21	22	23	24	25	36	27	

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

Page 9 of 9

2014

orane.	V	Ç,	V		
48	2,42	J Š	5.6 K		Data Checked and Approved
3047.7	7,000 7,000	5239.9	7/99.5 2/9		Data Checke
~~~	~	€^3	<u>_</u>		

End Date (MMDDYYY): 化化化的 Weighing Date (MMDDYYY): 1/作化	Remarks						
End Date (MMDDYYY): ( Weighing Date (MMDDYY	(B-A)/C Mean Dry Weight of organisms	25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55	875.9 875.9 875.9 875.9	1000 y 200 y		3 6 8 6 8 3 6 8 6 8 3 6 8 6 8 3 6 8 6 8 3 6 8 8 8 3 7 8 8 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	C Number of organisms	ナルシナレ	J 60 3-4	\$ <del>5   5   4</del>   V	N 3+3+4+	\ \ -\\\	
NYYY): BOLG (6)	B.A Total Dry Weight of organisms (mo)	1 4 5 5 5 5 5 2 2 5 5	572.0 426.0 426.0 339.8	4 (2) 20 20 20 20 20 20 20 20 20 20 20 20 20	4515 6903 484 484	2383.9 240.4 353.6 333.6	
Start Date (MMDDYYY): 12/4/16 Drying Time (HH:MM): 32/65! Client: NAVRTO NATED	B Dry Weight of foil and organisms (ma)	3476.0 3547.9 348.8 3484.0 36.48.8	3660.5 3897.8 3538.8 3647.3 3570.8	3520.4 2950.0 2829.3 3526.9 3421.3	3760.4 3598.2 4044.0 4050.0	2871.6 2800.4 3239.9 319.5	
	A Weight of boat (mg)	30.28.42 30.28.42 3350.2 3350.2	3121.5 2401.8 3409.5 3000.8	23.46.8 20.46.8 26.41.0 75.70.1	2353.7	2544.5 2557.0 2557.0 2557.0 2557.0	
For 4097	Replicate	2 E 4 S	2 3 4 5 5 5	- 2 8 4 S	- 2 m 4 s	- C 0 4 L	< ∞
Control Test ID: イセンゼの今チ Drying Temp: 100代 Analyst: NW	a is	Contact Rost			\$ 43 8 43 8 43 8 43 8 43 8 43 8 43 8 43 8	13 - 43 - 0 40 43 - 0	Banks Banks

End Date (MMDDYYY): \Q /I4// B	Weighing Date (MMDDYYY):\2/13/	
Start Date (MINDDYYYY): <b>EALIN</b>	Drying Time (HH:MM): みかん,	Client Nauday alarmin
Control Test ID: (CD 4097)	,	Analyst MM

Dying Temp: 12			Drying Time (HH:MM): 455			Weighing Date (WMDDYYN): 22/2	
Analyst: (M)			Cifent: NAVARU NATION	NATON	7	***************************************	
	~~~~	«	m	۲. ش	C	2 P	***************************************
es es	Replicate	Weight of boat	Dry Weight of foil	Total Dry Weight	Number of	Mean Dry Veight	T T Z Z S Z S
	000000000000000000000000000000000000000	Ŝ			organisms		0000000000
5-53-53	\$	8/5/2	3,512,5		V	3%	
	2	596	3230.2	633,8		I BY	
2	ന	3274,3 74,3	4038.4	h/h9t	٠,	80	
	4	رة د كو د كو	3620,2		V	2000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	ເດ	よ い に は く り よ に し り に り に り に り に り に り に り に り に り に	3744,7	?. ?.	~	Ġ Ž	
S		\$696 7	3170	9	J	T,	
· 2 3	7	သ ဝ	r: 3 8	9328	<u>٠</u>	3	
S	m	4 2 2	265 4·0	3	<u></u>	4	
	4		2869.7	٦٦٩٠٦	J	- 08° 80	
000000000	ĸ	2.642	29.00	そうな			***************************************
C. 1. 200.00 (· According		æ € •	236.5	3	7	***************************************
3 1	7	2,6430	34.0,3	2014	·	353	
33	m	2.8349	3558.2	423.3	<u></u>	305	
1000000000	7	2 2 3	3008.S	C	J	8	
	တ	3 06	31 <u>0</u> 0	00 X	. "33"	<u>ر</u> چ	
0-188-188 1-188		200	2 2 5 5	3	C	2	
Ž	18	1. * 1 2 to 3 4 - 2 (4) 7	2728,2	S	~	1300	
<u>\$</u>	er)	7306.2	304 F. 6	F		G S	
.000000000	4	2	2782,7	Y	·d	76,77	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	w	7846.4			0		
737. 28T.01	**************************************	29720	1386.1	₹SB	7	28,8S	
	2	C.	27.7.	9	~	2 3 8	
ž	m	7,000,7	35,523	Ş	7	2	
***************************************	4	2698.5	2940.2	78°	4	<u> </u>	
	w.		, management	***************************************	0		
u S S S	<						
	တ						10000000

Weight Data for Z. mays Root and Shoot Growth

\$			Drive Time fill 888.	38 83 3 3. 4. c.	***************************************	Minimum Data (RARADIXX	**************************************
Analyst: ###	Diying remp. (M)** Analyst: /		Client: NAME (MITTER)	Marie 45 X S			
	***************************************		haanna aan aan aan aan aan aan aan aan a				
oodo000000		•			O		diodissoon.
<u> </u>	Replicate	Weight of boat	Dry Weight of follows	Total Dry Weight	Number of	Mean Dry Weight	Remarks
00000000000	:	, D	2000) DE	organisms		
10-05	Kon	4 5	2580,3	O,	geospec.	\ \ \	•
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2		2724.3	~~~	and the second	3	
`	ಣ	2778.3	8 2 2 3	S	*	\$	
	4	2, 99, 4	2304.0	9 X O	^	#XX	
	ಬ	7 928 4	3028,0	3.50	^	04.XX	
Ç	dono	2 9 3 7 . 3	306.5		5,0000-	2	
) 2 8 8	2	2564.1	7	- 2	00,000	2	
Section	ಣ	2261.8	2747.6	Ž Ž	ķ		
0 00000000	#	4777	2856,5	S	*	4	
00000000	ഹ	1834	3250.3	232	^	25, 25,	
Š	4	\ \ \ \	3390.5	r,	హ	A	
	~	2 <u>2 8</u> 2 82	7700	^	%	3	
54°S	ന	1 24 7 V	2785.5	-55560- -5500- -5500-		4	
	4	かなど	0,4908	3787	ブ	Š	
	ឃ	0 1 7	0'9857	2	.	2,42	
10-01	\$000	Z	7777	Ž	5	8	
	2	24350	3:2:	0.080	>	4	
ŝ	m	£335	756.2	Š	! ^	r I	
	4	4.4666	2864:0	3. I	ブ	<i>\</i>	
	2	2663,1	3320.0	5,970	ţ,^	N.	
40-100 - NO.	~~~	12676.7	2890,0	2,9,2	V	8 3	
	N	5 6 8 5 2	2767.1	Š	V	Ŷĸ	
2	ಣ	1 8	2569.6	3	\C	<u> </u>	
	4		0 % %	Ľ,	M	オジブ	
	ဟ	7.01 7.03	72727	3	,	? ?	***************************************
<u> </u>	<			,			
2	α		0000	××××		****	

End Date (MMDDYYY): 12 /14/16	Weighing Date (MMDDYY);	
Start Date (MMDDYYY): 12	Diving Time (HH:MM): 72 NK	Client P. E. Ray & Arry
Control Test ID: TEOYOR?	Diving Temp: 1000	Analyst Akk

Weight Data for Z. mays Root and Shoot Growth

***************************************		4	ග	ج ش	<	24.0	
<u>C</u>		1.0.1.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	Dry Weight of foil			Mean Dry Weight	200 A 100 A
2			and organisms (mg)		Number of organisms	of organisms (ma)	
	**************************************	2626.9	7.525	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u> </u>	1 333	
) } \$	~		2222	2,9,2	(0	42	
ĮŽ Š	3	2,925,8	35/7.0	2480	~	- 8	
	4	2832.6	3534,2	3. R	Ź	KQ. 33	
	2	3018.0	3540,7	438.7	7		
	L een	<u>ج</u>		Z E	. T		
; ; ; ;	2	28K5.7	3016.8	772	J	30,3%	
Š	3	3,6636	3699	r	3		
hoognangen	4	25251	2658,0	5 2 2	wayee.	222	
bossoss	ഹ	く 第 窓	1.95,42	- - - - - - - - - -	oraș refere		
S	A	STI .	3336.8	S S	ブ	3. ∾	
5	7	749.9	3239,6	L 4 9hh	· essent	- G9 */#	
N S S S	m	2443.0	3416.6	5 %	ongon ones	- 562	
······································	4	48.0%.0	\$ 7 kg	9 7 7	~~	<u>z</u>	
b	ಬಾ	744.5	3227.1	\$ 150 \$ 150 \$ 150	**	126,90	
- 12-CS	****	2022,7	8/5077	Š	~	ķ	
	7	22.5	2017.2	S	7	60 G	
	~	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2208.0	? Æ		25.65	
www.	4	2	7.701.0	3,5	V	2	
	ഗ	88 \$	1945.8	0 3	^	20.33	
10734	-	25325	3015.8	ćŚ	.~	4035	
<u> </u>	7	2222	3037.3	27.02	- Constant	06 9D	
	m	7	334	*	ブ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	4,	2473.5	3057.9	ትክଷ\$	ۍ	E	
	တ	2759	7	463.5	e C		
Bionic	A						
e E E	۵					****	

2017

Weight Data for Z. mays Root and Shoot Growth

Ę	l I	r	50055555574								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	***************************************									***************************************						~		************	
MIN PLATE	£		ć	Kemak Semak	de		المعالمة	^			^	ග	M	<u>ට</u>														7	Ý		
End Date (MMDDYYY): \$/14/16 Weighing Date (MMDDYYY): A/6		- 3/V- a/	Mean Dry Weight	of organisms (mo)		<u> </u>	HIZ H	K S F	¥2254	434.64	<u> </u>	i i	చొ	で 2 マ	ŕ	<i>£</i>										/					
	***************************************	de anno de constitució de constituci	٠ :	Number of organisms	~~~~~	~	ን	.3	×	×	M		-3-	Ļ																	
Start Date (MMDDYYY): 2/4/16 Drving Time (HH:MM): 3/3, Mg.	NATIONS.	W 23			36.1	S S	소 소	Ę	189. x	くべう	r T	4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	v A																	
Start Date (MMDD Diving Time (HH:A	Client: W.A.JATO NATEON	23	Dv Weight of foil	and organisms (mg)	2066,1	2/54:2	723.4	ž	2080.2	2625.5	2.243.1	2835.1	2796.0	2883; x					/												
	***************************************	000000000000000000000000000000000000000	<	Weight of Doal	1.9400	2010	7680. 0	. 9 4-90	1.9110	2.0023	- 0 4 9 . C 1 4 9	8 9	2.1043	2 0659																	
4994	, , , , , , , , , , , , , , , , , , ,	000000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<i>ţ</i> ~~	C3	m	4	3	*	C	೯	4	ഗ	*	7	/ m	*	ហ	ķ	2	ന	4	ಬ	***	2	ಣ	*	က	А	œ
Control Test ID: (十かい)	I N	50000000000000000000000000000000000000		es Es	C.3 A.5 A.5	5 2 3 7	Z Z	Securit Ada		1.1-4CA	- - - -		Grandon or The Control of the Contro	***************************************		7	•	•••••			•									, ico	2

Tetra Tech, Inc. Ecological Testing Facility

Page 1 of A

START Date/Time (MMDDYYYY HH:MM);

<u>8</u>

FINISH Date/Time (MMDDYYYY HH:MM):

12/18/18

Common Test Substance:

Percent Total Dry n	Germination Weight (mg) Weight (mg)	100 366.3	100 385.2 77.04		78.60
Number of Seeds	Germinated	þ	v	b	ır
Number of	Seeds Planted	V	S	<u></u>	<u></u>
£ 6	Ž	<	æ	U	۵

m ವಿ Š Ë Light Int. (µmol m-2 s-1) Parameter WHC (%) îs Ha

	Ľ	Z	Z	É	8	<u>ک</u>	ž	E	A S S	
400	7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Z	Ş		ą	¥.	É	2	Ş	
6 4 4 8	7 1 2 2	Ŝ	ž	Š	స్	Ž	\$	Š		
	w	0	0	0	۵	0	mont	5	· 〕	
ated G	۵	0	0	0	0		vocorosois.	3	¥	Š
r Germin	U	0	0	O	ρ	0	0	Ţ	J	
Yuma	a a		0	0	0	0	0	<u>ر</u>	C	
	≪	0	٥	0	0	٥	0	0	0	
Pressure	(01) 020 200 200 200 200 200 200 200 200 20	0000000000) 2	J Ž	<u>ک</u>	7 0	K K	込 る	Š	
Relative Humidity	20	₹	K	~	Ŗ	0	٠ ۲	? %	~ ~	
Temp	Ţ	0	المراجعة المراجعة	Ç Z		9 62		ć Ž	4 4	
č	Š	0	ę~i	N	m	~~~	w	ယ	~	

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

~	
*	
පසුප්	

		ZZ~	***************************************	***************************************	8/1	S					
Ē	II/P/oject:	Client/Project:		Test Subs	Test Substance: Cstが紹介し	2					
	***************************************		***************************************				^				
â	<u> </u>	Kelative Humidity	ressure	<	Ž L L	ar Cerm	hated	3.	2000	(C)	E
	2 %	(%)		< *	١	3	3	ii .	200	800	,
×		Ž Š	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					<i>z</i>	200	2	<u>9</u>
6	4	٥ کز	I K	0	Ç	ゃ	V		a S	ŝ	2 Z
<u></u>	0 7	â	K O	0	L	L	4	J-	4	Z	3
Seed Seed	<u> </u>	77.72	a T		'n	þ	\s	Ţ	3	5.5	3
2	ر ال ال	× ×	ત. ૧.૧.૧.	77)	v	n	n	3-	55	3	1300
in)	4 20	O.	7 5 7	.i.	h	V	<u>ا</u>	37]_ 842	-9°C	7	00 00 00 00 00 00 00
tod stå	¥ W	٠ ١	ر چې	\ <u></u>	V	V	5	j	258	ž	3
ž.											
က္										***************************************	
8		/	/								
5											
2											
73											
77											
23											
24											
23										***************************************	
56											
23]
oc.											

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

ED_004888_00000097-00311

,,444 ₀ ,									***************************************	***************************************		•••••	************	•••••			***********								
Average Root Length (mm)			\$\times_{\time	•	2		C C)					7					o 					- 5 5 7	••••	
Root length (mm)	<u></u>	<u>^</u>	<u>\$</u>			~~~ ~~~~	S	90	2	<u>~</u>	- 22	2	3	<u> </u>	<u>~</u>	2	3		<u> </u>	2	<u> </u>	2	\ \ \	www.coo	donnes
Average Shoot Length (mm)			4		~ .		(((7 . 7 . 7					0					o.				L C	γ γ Σ		
Shoot length (mm)	0	~	53	Z	\$	<u></u>	77	70	(d	300	307	387	2	3	2,7	0,77	2	S	227	S	\$07	57	907	2	
Seed	gend.	7	m	7	s	fund	7	m	7	ហ	fred	7	m	4	សា		7	m	4	w	general a	7	m	4	£
æ			«			••••••	5	æ					u	••••••		***************************************		0			••••••		ui.		

Cucumis melo Toxicity Bench Sheet

Page Lof

Test# 7204003-

START Date/Time (MMDDYYYY HHI.MM);

3

8 / 8 / 2

FINISH Date/Time (MIMDDYYYY HH:MM):

Test Substance:

Client/Project:

SHARRAMANAMAN	The state of the s				
C C	Numberof	Number of Seeds	Percent	Total Dry	Mean Dry
j j	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
⋖	S	7	40	, 00	
ක	V	÷	0	0	SCOL
U	Ď	4	0 89	2-13	-04.335
۵	n	V	Ç	7 55	1 6 2 4
u	n	~	4	203.2	

To see the second secon	Õ	۸eO
rd: d: 22 c	0	g
	<i>O</i>	V Ž
ii.	<u></u>	X
WHC (%)	8	

2	*******	Relative Humidity	pressure			er Germir			2	ŝ	i
3	2	8	(mHg)	4		U		لننا	2 2 2 2 3		0) 55 55 55 55 55 55 55 55 55 55 55 55 55
0	0 7	O.X	00000	0		0		٥		ì	S
eved	Z	22.0	J. G	9	٥	0	0	0		¥	T.
~	C.	2 5	Z	C		۵		0			8
m	4	0,2,	8	0		C		0			
4	7 7 7	0,00	0,0	0		0		0			
un .	Ċ	O Ś	Ž	0		101		0			Š
Ø	Č	2		0		(~)		0			Ē
	Ŕ	7	Ľ.	***************************************		W		0		i	Š

Ecological Testing Facility Tetra Tech, Inc

Data Ckecked and Approved

m

SC CONTRACTOR

Notes

ш

C

Number Germinated

0

3

28

Ŝ

Q

(30° (1000)

S

FINISH Date/Time (MMDDYYYY HH:MM):

START Date/Time (MMDDYYYY HH:MM):

Page 2 of 2

<u> </u>	Z Date/ime (START Date/Time (MMDDYYYY HH:MM): [기사] [8]		FINISH Date/Time (MMDDYYYY	ate/Time	Sandy Sand Sandy Sandy Sandy Sandy Sandy Sandy Sandy Sandy Sandy Sandy S	<u>~</u>
Clien	t/Project:			Test Substance:	7		
***************************************	NAVAGO				ā	Si - 13- a	, C
d	a a	Relative Humidity	Pressure		Rumber	er Germinater	ă ă
<u></u>	Ċ		ĵ.	4	ထ	U	
ထ	ž	? (*	8	6.6	`J''	n	M
σ	K	***	Z,	~	.) ~	.	
9	[®]	° 4	S.	K	ÿ		
bood bood	7	2,28	7,4,4	O	Ų.	Ţ	*.
Z,	Ϋ́ Σ	9 K	29.2	CĄ	<u>.</u>	5	
m	3,5	3%	7.67	C.J	3-	3*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
જ	9 1	2,2,0	29: 2	N	Ť		"
្ដ	z K	9	×	К	>	5-	
5							
[~							
8							
ಲ್ಲ							
೪							
7							
72							
ä						/	
72							
S,							
56							

D. C.

Ž

Q, T

8

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

2

Test # TE WKW

Average Root Length (mm)						***************************************		50					\ \ \ \			***************************************	4	4	•		***************************************	×	4. N		
Root length (mm)	0		freshamen for the same of the	, manual de la company de la c		7.	3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\$	25	Š	***************************************	125	25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	<u> </u>	6.3	_2	**************************************	**************************************	uggest)ville
Average Shoot Length (mm)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5.7.2	2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				3			\(\frac{1}{\sigma}\)					5>		
Shoot length (mm)	\(\)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		0.20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$\$	\\ \frac{\lambda}{\tau} \\ \tau \\ \ta	teapelleten teapelleten teapelleten teapelleten teapelleten teapelleten teapelleten teapelleten teapelleten te		2	30%	~	2000000000	F	2	5		\ \ \ \	4				·
Şeeç	dan)	7	m	*	s.	*~~;		m	43	w	bent.	7	m	Ţ	ມາ	5004	77	PF)	42	ın	şi	~	883)	47	s
2 2			<	i	l	***************************************		i				E	u u												

Tetra Tech, Inc Ecological Testing Facility Cucumis melo Toxicity Bench Sheet

Page 1 of 2

Test # 1704/08/2

FINISH Date/Time (MMDDYYYY HH:MM):

START Date/Time (MMDDYYYY HH:MM):

Test Substance:

NAMO NATOR Client/Project:

,	000000000	3	30000000	ç	¥	ç
Mean Dry	Weight (mg)	0 00 00 4 4	5. 0	85.01S	- 40 - 40	56.38
Total Dry	Weight (mg)	4.	6 6 7	7.0 4.0 0.0	4, Q.	4
Percent	Cermination	0	0	0	0	۵ 8
Number of Seeds	Germinated	San	V	Ť	す	Ť
Number of	Seeds Planted	ın	v	V	J /^	h
ς α	ž Ž	⋖	සා	Ų	۵	ш

\$ \delta	<u> </u>	>e C
	0	į.
(ns) Hd	8	(V 00)
ώ.	Š	ı
WHC (%)	ß	

Temp	Relative Humidity	Pressure		Mumb	er Germir	lated		4		š
 3	8	Dâ I I	⋖.	മ	U	۵	w	- - - - - - - - - - - - - - - - - - -	S	e E
Ž	25	ana	٥	٥	O	0	٥			Ž
8	3	\$ \$	0	0	0	0	0			7
	36.0	2		0	0	d	0		ð	Ŝ
24.9	0 0 0 0	8	0	O	O	0	O			4
	0.82	7 9 0	Q	0	9	0	0			0
		0	C	0	٥	0	0	***************************************		\$
	2		~	~	rd	0	301000			Z
458	Š	. J.	-3	<i>b</i>)	7	******	***************************************			3

Page 2 of 3

	i I				7	/_ @					
Ë	/Project: -	Client/Project: / NAVASO NATIZON		Test Substance: Sびしースタド	tance: Sotto =295-07	-2917	ö				
		Relative Humidity	Pressure		Numbe	r Germin	ated		9	900	ì
<u></u>	2	180	 20	<	æ	U	۵	tti	2 2 2 2		œ E
Ø		3,5	SIR	\$.J	N S	J	9.000		2	Š
ರಾ	4	Ç	ý	V	>	y		ş۸		2	Ž
Ç	Ċ	٠ 2	% %	(-	ン	- -3	- - -	3			3
6	430	10 10 10	3	'n	I	T	7	3~		12	Š
12	W W	78	ц ц	w	n	2	Ţ	5		3/	ű Ö
ಜ್ಞ	S Z	0,50	7.57	V	S	, styre	İ	T		4	2
덕	r K	0	J K	70	<u>\</u>	. J.	·.)~	900 100		×	3
ង											
91	7	/									
<u></u>											
80							***************************************				
ō,											
20			/	/							
21				7				2			
22	***************************************				/	/					
23											
24							<u> </u>	/			• • • • • • • • • • • • • • • • • • • •
23								7	/		
82										/	
27											
00							~~~~			***************************************	_

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

																			00.00						
Average Root Length (mm)			4. 0				•	φ ~	ż.				о О		,,,,,,,,,,	2000	:	4			÷	(۷3 ×٥	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Root length (mm)	¿	<u>_</u>	5	2	2	8	5	2	Ŏ.	Ş	~ ~	~	<u>(</u>	*>		X.	d		B	, processors	d	Š	Ļ	**************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Average Shoot Length (mm)	**************************************		<u> </u>				i	~ & & &		,		į	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	·······		military (1974)	₹	ا ا ا					Ь 4 3		
Shoot length (mm)	18	2	క ఇ	2	E	5	Z	5		Ì	Ş	ż	3.00	122		Ę	2	2	35	, portantial participant of the	Z	S.	<u></u>	2	
Seed	ñ4	~	m	4	'n	ywi.	7	m	7	ഗ	<i>fm</i> ‡	7	m	4	w	éssod.	(4	m	4	w	şş	7	m	43	'n
Rep		á	⋖	L	l		i	c					u				i	<u> </u>					i		

Tetra Tech, Inc Ecological Testing Facility

START Date/Time (MMDDYYYY HH:MM):

Page 1 of 2

3

FINISH Date/Time (MINIDDYYYY HH:MM):

12/18/18

Test Substance: Sul = 240 - 01

	500000000		,aa	,	,	~~~~	·····
	Nean Ory	Weight (mg)	2 8		S	529.27	124 4
	Total Dry	Weight (mg)	7	4	7	74 S. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	4 4 4 4 4
	Percent	Cermination	0	0 7	4	0	C
	Number of Seeds	Germinated			7	2	,
	Number of	Seeds Planted	Ŋ	S	S		IJ
***************************************	ç Q	Ž.	⋖	മ	U	۵	w

~	> 2	ğ	ري ري	I	
٤	2	0	Ω	Z	Ş
***************************************		F 48 48 18 48 8	(ns) Ha	Light int. ($\mu = 1.3$)	WHC (%)

					12/1/18/15				
j		Æ	Ž	Ē	2	V	Š	6	3
		쇷	8	3	3	ď.	Z	Ş	Z
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Salon								
	i.i	g	0	0	0	C	0	0	0
ated	۵	0	0	0	Q		0	T	c
Number Germinated	υ	O	0	9	9	0	0	0	0
Numbe	æ	٥	0	9			0	0	0
	æ	а	9		0		0	0	0
Pressure	BH	guador	Į.	- 9 ⁻ 2,	2.0%	3.0	0 X		X
Relative Humidity	(%)	2	28	2	Q	70.0	Ç	2	é
dem p	00	2	o,	4	2 % By	23, 2	7.00	<i>(Z o o o o o o o o o o</i>	8
č	à S	0	ri	7	m	4	'n	ထ	

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

2014

Circimic molo Tovinity Booch Choos

Page 2 of 2	2		Cucumis	Cucumis melo Toxicity Bench Sheet		S S S	ă	;		Test #	Test # 170 408
	ğJ	START Date/Time (MMDDYYYY HH:MM):		FINISH Date/Time (MMDDYYYY HH:MM);	te/Time /	2	Ë	Ä			
Client/Project: {	3.000	ATO NATION		Test Substance: Sil・コーロ	Sauce	ر. 5	~ ?				
Len		Relative Humidity	Pressure		Numbe	Number Germinated	ated		4	4 4 5 4 5 × 5 8	
Ç		× ×	80	⋖	සා	U	۵	w	(1) (1) (1)	A 200 11 11 11 11 11 11 11 11 11 11 11 11 1	y
Ź		\$	Ų	0	0	0	જ	0		2	2
S	1	Ŷ	* `Š	0	~~~~	***************************************	ત	٥		Z	3
S		? ?	8	٥	*000000		W	٥		ź	3
, ,	۸	** **	Ţ		*****	,	CB	٥			į
\$ \(\frac{1}{2}\)		%	رن در		2000	લ	CE	٥		Q	<u> </u>
S Z		0,3,	7.57	********		S	O	0		4	8
z K		?	¥		*************	d	6	,,,,,,,		슃	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ř	/										
				/							
				7							
					7	/					
							/			~~~~~	
									/		
							***************************************				/
				MANAGEMENT CONTRACTOR		~~**····		MANAGEMENT OF THE PARTY OF THE	***************************************		Appropriate the second

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

Test # TEOM 039

Seed	Shoot tength	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
g-ref	5		2	
7	ş		******	
m	ř	ers es	***	07
4	ţ		udes	3
m	*		W6.	
grus	ž		30	
~	Î		iann	,
m		8	w	00 Cl
4	***		***************************************	9
ĸ	*		8	*******
gud	5		~~~	***************************************
2	2	U G G	ź	•
m	***) }	***************************************	
4			Į	3********
v	ì		**	\$
quel	3		2	***************************************
7	i Co	**		· •
m	*	J.		
4	, con			-
w	*		3000	-
pool;	Æ			***************************************
N	(·	w	
ന	***************************************	~		~>
4			**************************************	•••••
ഗ	a de la companya de		**************************************	· · · · · · · · · · · · · · · · · · ·

Tetra Tech, Inc Ecological Testing Facility

START Date/Time (MMDDYYYY HH:MM):

Page of

FINISH Date/Time (MMDDYYYY HH:MM):

12/18/18

Client/Project:

Test Substance:

))	Number of	Number of Seeds	Percent	Total Dry	Mean Dry
ž	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
4	C	S	٥	4 N	0
සා	ia	V	00	0. 	0.0
Ų	V	U	0	4.400	00 00 00 00
۵	4	U	0	22.5	4.10
w	n	4	C		40

Same and the same	<u> </u>	àe O
	0	g
(ms) Ha	<i>~</i>	3 5
Light Int. (μ mol m^2 s ⁻¹)	S	G G
WHC (%)	ž	

24, 3 20.0	Č	0. E E	Relative Humidity	Pressure		Zemp	er Germin	iated		6 4 4 8		
71.0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Š	2	32		≪.	ದು	U	۵	ш	7 3 3 8		
26.0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		?	outport.	0	0	0	0	0			
20.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2	2,8	X	0	0	0	0	0			15
	7	6	2	٥	0	0	0	0	0			8
	m	87 12	o o	2 9 B	0	O	O	q	q		-	7
	4	3	0,87	30		0	Ð		innab			2
	រភា	s.A	2 7	30	r/s	d	<u>)</u>	4	>			Ć.
	ယ	T.	9,50	, 5°		V	<u></u>	<u></u>	Jar			Ğ
	~	4,78		2	~	5 -	L-,	49	<i>></i> -			ź

Data Checked and Approved

Ecological Testing Facility Tetra Tech, Inc

2014

Page 2 of 2

FINISH Date/Time (MMDDYYYY HH:MM):		Test Substance:	5-030-T00
START Date/Time (MMDDYYYY HH: MM):	0021 8116	Client/Project ^y	25542

0 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		~%	20	<	CÉ				× × × ×	200000000000000000000000000000000000000	2000
	:	**************************************	Out of the Control of		3		a	 i	?		
	/ K	?	Ļ	*	h		\ \	>		2	Ž
	Z Z	? \$	(3)	Κ,	Į,	~	J.			2	3 3
	r K	9 9	3	V	L,		T,	>		Z	දි රී
	2	33.0	\$*************************************	\ <u></u>	\ <u></u>		h	Ţ		Ţ	2
* ~	k ki	i. Yn	e G	S	r	V	v	T		3)	200
73 E1	ِي آپر	2,0	7,67	V	V	V	V	J		13/4	28
* 0 ***		2	Z K	\ \ \	<u>ا</u>		L	<i>"</i>		.2	Ì
13	/										
16	1										
77											
93			į								
ō,											
20			/								
21				7	/						
22					1						
73						7	/				
77							7-	/			
23								/			
76									/	/	
23											
28											<u></u>

Tetra Tech, Inc Ecological Testing Facility

	·											Ţ					Ţ									××.
Average Root Length (mm)	4 .4 .7												4			4 4 9					132.25					
Root length (mm)	Section .	<u> </u>	<u>t</u>	~	K	£	K	3	\$	ĸ	2		Z		¥		9	2		Ś	<u>ત</u>	2	ţ	\$	-	
Average Shoot Length (mm)	203.0					7 0 2 4					2		000		**************************************	9.8.6					184.5					himmennemennemennemennemennemennemenneme
Shoot length (mm)	2	ţ	Š	68 - 4		<u>ત્</u>	.	2	<u></u>	Š	É	え え	2	Y. 2	Z	ર્	·	3	Ž		<u>z</u>	2	\$	3	approximate.	8
Seed	dood.	N	m	4	ហ	bood	7	m	*	w	śmi	7	m	**	រោ	hood	(vi	m	4	m	doord	r d	m	4	សា	***************************************
8	<u> </u>							EC .	i			i	Ų			٥					iui					W. Charles Control of the Control of

Tetra Tech, Inc Ecological Testing Facility

Page Lof 2

START Date/Time (MMDDYYYY HH:MM):

FINISH Date/Time (MMDDYYYY HH:MM);

12/18/18

Client/Project:

Test Substance:

00000					
	Number of	Number of Seeds	Percent	Total Dry	Mean Dry
V)	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
	IV	(r	0	9 6 8	7 5 5
	()		0	4 4 0 0 0	36.70
	V	j.	0	4 4 4	36.98
	S		0	6, 5	85 80
	V	V	0	ال مر م	0

A seed as one as a seed.	a	λeΩ
rasassar	0	Eug
(ns) Hd	0 60	У С
Light Int. (µmol m-2 s-1)	Ţ	***
WHC (%)	E	

į	Ť e m o	Relative Humidity	anssa.		Z m m D	er Germir	ated		46	,	ŀ
ĝ	2	~~	<u> </u>	⋖(යා	Ú	۵	LLI	2 0 2	2	<u></u>
0	2	Ĉ	****	٥	0	0	0	٥		2	E
- free	Z	9	Ž	Q	0	٥	0	0		2	S.
~	78	240	3000	0	0			0		3	22
m	24.9	10.0	29.8	0	٥	9	0	d		3	20
4	23.3	30.0	8, 6, 7	0	0	0	0	0		Ž	7
ın	o K	2	S S	\ <u></u>	U	<u>-</u>	(7)	0			<u></u>
ဖ	Ć.	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	į,		40	<u></u>			2	S
	0. L	2		V		60	L	V		Z	S

Page 2 of 2

Data Checked and Approved

Ecological Testing Facility

Tetra Tech, Inc

Client	/Project:	Client/Project: ' 시생 스 에 기쉬도하		Test Subs	Test Substance:	R					
	Temp	Relative Humidity	Pressure		Numbe	Number Germinated	ate c			,	1
<u></u>		, see	(8) T C	<	c	U	۵	i	Notes	vi Ni Li	<u> </u>
		0.9%		V	3"	J	Į.	L		Ź	5. 43
9	Š	۵ ۲	ź	2	>	>	V			R	3
9	Á	0%	8	V	L	23-	V	V		£	्र श
600d 600d	e Ž	0.4	7 70	V	Į,	Ţ	\n	\		Ż	2
 C	N 0 0	÷ 28%	4 4	V	V	5	VI	V	•	3	Ê
17) 17)	۵ ټ	2,0	7,57	V	Ŋ	÷	L,	5		4	28
***	\ \	٠ ١	ž	V	۷,	Ŷ	V.	L		Ź	S
w W											
ç	<i>.</i>										
P.											
8											
<u></u>											
2				/							
73				/							
22					7	/					
5						/	/				
2							7	/			
z								7	/		
92											
27											
α					~~~~						_

Test # # CYON

Average Shoot Length (mm) No. 197.6 127.6
 2.622
 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25

Data Checked and Approved

Tetra Tech, Inc Ecological Testing Facility

Cucumis melo Toxicity Bench Sheet

Test# ROV802

FINISH Date/Time (MINDDYYYY HH:MIN);

2/2/2

START Date/Time (MMDDYYYY HH:MM);

Page Cot

NAKRAMA

Client/Project:

Test Substance:

Soil - 200 - 02

				***************************************	***************************************
Number of Number of Seeds	Number	of Seeds	Percent	Total Dry	Mean Or
Seeds Planted Germinated	Germina	to to	Germination	Weight (mg)	Weight (mg)
	<u></u>		0	4	ر 4
S	U		0	486.1	27.
**************************************	4		0 83	r K	S E
~	~		03	8.312	62.26
~~	h		C	4,000	4

s so of the state of the	ă	>e Os<
	0	End
pH (su)	ဆ (၃၀)	<i>‰</i> Ö
Š	Ť	ş
WHC (%)	ť.	

				··········					
	2	5	Ž	2	0	2	Ż	8	76
	n D				Z				
**************************************	್ಷ ೧೫೭೦ ೫೭೦								
	ш	а	0	0	q	0	ဝ	خز	
ated	۵	0	9	0	0	0	٥		647
ır Germin	U	٥	0	0	0	O	C	, w	<u>پر</u>
Numbe	æ	۵	0	٥	0	0	~	6	L
	⋖	٥	9	9	0	٥		Vergoode wood	Ļ
Pressure	000 1000 1000 1000 1000	5000	ż	2	8 6 7	2 9 9	Ö	C S	ž
Relative Humidity	(%)	o ž	0,8	၁ ရှိ	0,000	77.0	2 7 0	2	8,0
Temp	Ç	Ş	ンド	Ž	7	3.2		2	4.7
ŝ	ŝ	0	end	7	m	~	ın	ပ	

ucumis melo Toxicity Bench Sheet	Sheet
200	<u>a</u>
200	T S S S S S S S S S S S S S S S S S S S
ucumis	200
	ucumis

Page 2013	Cucumis melo Toxicity Bench Sheet	Test # 17:040%
START Date/Time (MMDDYYYY HH:MM): 13 4 6 RW Client/Project:	(MMDDYYYY HH.MM): FINISH Date/Time (MMDDYYYY HH:MM): 12/18/バの Test Substance: SQ) - 26/02	

	Qi CC	20.00	Q			0	l S	<i>J.</i>				T	<u></u>	········		<u> </u>						Γ,
, ,		Š	3		3	2		3														Į/
3.45	Spin	Z	2		4	3	13	Ş														
3 3 3 3 3 3	2 0 2 2																		/	/		
	LLE	'n	i,	L	V	\ \	ل	\										/	7			
ated	۵	m	171	(V)	(^)	m	~	M										7				
lumber Germinated	v	J.	· >	۳.	Ţ	2	Ť	Ì	~								/					
Numbe	ω	₩	V.	h	\ <u></u>	V	h	h						***************************************		7					***************************************	
	*	V	~	Ļ	\ <u>,</u>	V	V	5														900000
Pressure	DO C	L K	Į,	oc K	Ţ	<u>*</u>	24,2	7						7								
Relative Humidity	8	ę	2	 2	Ç M	'n	0 0 0	0.		/												
dwa	(۲)	ر گ	4	/t. (C)	e A	8 0	- 52	n K														
ñ	Cay	00	On.	9	bonj hud	~~ ~	Ħ	(C) (C)	w W	ద	2	ထူ	ä	22	23	22	23	24	z	72	23	ä

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	×000000				··	مستهند			0000.400.Y-	.0000	~~					g.co					,	·			×6
Average Root Length (mm)		4	ф —	4				\D			7	*	/ 				£ .		2				~		
Root length (mm)	2	0	2	9	25	~	2	2	\$)2!	5	25	2	2	apartity.	<u></u>	2	- O	>>	***************************************	:~	29	3	57	2
Average Shoot Length (mm)			3 5 7	,				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*	·	\rangle \rangl				(j V					\$\frac{1}{2}\$	·	
Shoot length (mm)	ď.	Ž	22	50%	\ \ \ \	~	200	ð	7	2	512	27	52	80	***	000	2000	7		**	2	50	\$	<u> </u>	T
Seed	e4	7	m	4	ın	ş\$	7	m	4	ហ	₹~~}	2	m	4	ഗ	~ ~4	E-0-3	m	4	រេក	quad	7	ന	4	រា
88			<					ന					U					٥					iss		

Data Checked and Approved

Tetra Tech, Inc Ecological Testing Facility

Cucumis melo Toxicity Bench Sheet

Test # THOMBS

START Date/Time (MMDDYYYY HH:MM);

FINISH Date/Time (MMDDYYYY HH:MM):

12/18/18

200

Page 1 of 2

12 TE - 6 Test Substance:

NAMES NAMES

Client/Project:

Š	Number of	Number of Seeds	inelia Percent	Total Dry	Mean Dry
2	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
4	V		0	231.9	4 4 7 1
ω	(n	V	0	8 : 4 : 8	35.60
Ų	V		0	74.44	1.4.1 4.4 - 1.4.1 4.4.
۵	(m	843	9	6 h	
w	V	117	0	4 4	ox C

PAT (Su) 1974 2.2 Light Int. (µmol m² s²) 10,4 = = = = = = = = = = = = = = = = = = =	4	<u> </u>	Ş C
	raidineter	0	ü
ī,	pH (su)	<u>ئ</u> ج	\ \ \
WHC (%) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Light int. (μ moi m 2 s 4)	j	1
	WHC (%)	Ī	

	Temp	Relative Humidity	pressure		Numbe	Germii	hated		: : : : :		j.
 0 3	2	8	Z.	4	€	\$	۵	w	2 2 2	/1 73 88 88 88 88 88 88 88	2 2 2
0	Q	0	9999	Ø	0	0	0	0		3	2
	Z	2 K	3	0	0	0	0	0		2	Z
~	Ž	0,7%	27.6		اد	0	0	0		3	22
m		0,62	8.67	0	9	q		q		2	40
q	23.3	70.0	00	0	9	9		9		ĕ	0 5
ഗ	2	0	K K	*******	0	O		390000		Ž	g
· ·	t	8	, r	~	>		000000000	W		3	S
	Š	2,5	r K	ю	√	~~~~	U	W		Ž.	3

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

Test # 150 4093

m
Ü
Ũ
2
Ñ
5
O
C
ã
മ
$\alpha \tilde{\alpha}$

4
0.000
Ë
><
Ö
-
<u>_</u>

38
2
S.no
w
* *****
5-00
Species
500
S
S
23
, 3
23
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3
, 3

Page 2 of 2

FINISH Date/Time (MMDDYYYY HH:WM):	2. / 8. / 8	Test Substance:)0-74-100
START Date/Time (MMDDYYYYY HH: MM):	7.7	Client/Project:	NAMES DATES

		8					2003															
7 - 3	2 2 2 2 3		M	N	(h)		~	M			;								/			
mated			~			(3.2		Μ										/				•••
Number Germinated	С В				<i></i>	V		<u> </u>								1						
- Grand	<) J			3 -															
Pressure	8	Ŕ	3	ය දී	4.0 .s.	e4 00	24,2	Ž						/								
Relative Humidity	8	્ર	2	0,88	ž	7 % cn	36.0	ري. ن		/												
			Ç	K K		ر د د	25	<	/	/												
	<u></u>	00	Ó	2	;i	12	೭	donej sirija	<u>,</u>	ည္	Ç	82	on On	27	7	77	23	24	23	79	72	~

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

Test # 7E04095

Average Root Length (mm)							•	\$ \$ \$										\$ \(\chi_{\chi}\)					60		
Root length (mm)	ÇQ	~	<u></u>	8			73		5	2	2	William A.A.	100m #0 5+	·······································	· mannerman,	~	<u></u>	<u></u>			\$	2	2	· come	:- (A)
Average Shoot Length (mm)			\rangle \(\text{C} \) \(\text{C} \					† ~					2									8			
Shoot length (mm)	2	S	02%	22	·	0 ~	**************************************	2		くだる	3		***************************************	09484-	***************************************	9	22000 S		interesses.		-^^ /*	2	\ \ \ \ \ \	ungdh	
Seed	end	r d	883	4	ın	ş-14	£7	£4.3	4	ហ	504	7	(A)	4	m	qui,	M	27)	43	r	cv m				
C.			K.					ac)	··········				u v					۵					LJJ		

Data Checked and Approved

Tetra Tech, Inc Ecological Testing Facility Cucumis melo Toxicity Bench Sheet

Test #Around

START Date/Time (MMDD/YYYY HH:MM):

Page Lot

33

FINISH Date/Time (MMDDYYYY HH:MM):

81/81/7

NAVATO NATEGO Client/Project:

Test Substance:

~~~~~~		***************************************	30000000000000000000000000000000000000	***************************************	
0	Numberof	Number of Seeds	Percent	Total Dry	Mean Dry
2.	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
⋖	(A	4	000	& 0 0 0	, , , , , , , , , , , , , , , , , , ,
යා	K	8	0	4 2.00	52.65
Ų	(F	ı	C	4 4 3 4	\$ \$
۵	\$p	4	Ç	S - 20 50 70	96.62.5
ш		l.	0	2 4	75 56

* * * * * * * * * * * * * * * * * * *	ā	^eC
- Tai ai a	0	<u> </u>
(ns) Hq	ک جہ	ζ\ ζ\
Light Int. (umol m ⁻² s ⁻¹ )	<u></u> ح	Ŋ
WHC (%)	I	

\$				2					
, *, *, *, *, *, *, *, *, *, *, *, *, *,		\$	2	£	~	\$	2	2	<u></u>
4	<u> </u>								
				0					
ಗಿತ್ತೇಲ್ಲಿ	Δ	0	0	0	<u></u>	0	************		*
100		,,,,,,,,,,,,	**********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		······································			
Z T T	മാ	٥	0	O	q	d		ત	a
	«	0	0	٥	q	q	0	<	· ^
Pressure	Œ,	70,000	2	2	202	2 9 8	or To	7.54	\$ \$ \$
Relative Humidity	\$	2	8	ŝ	7 9, 0	700	3,0	2,5	0
a a a a	್ಘ	2	7.		o	23.5		* \$	, c
Ž	». 3	0		N	res)	**	n	(Q)	**



Data Checked and Approved

START Defection (MMDDYYYY HH,MM);   FINISH Date/Time (NMDDYYYY HH,MM);     ClenyProject:													
Relative Humidity   Pressure   Number Germinated   Notes   Initials   Time   Soil - AS-0	ŽŽ		(MMUDOYYYY HH:MM); 500		ă K K	ate/Time (	Nan Supplemental S	Ž	~~~				
Temp   Relative Humidity   Pressure   Number Germinated   Notes   Initials   Time     Number Germinated   Number Germinated   Notes     Number Germinated   Number Germinated   Notes     Number Germinated   Number Germinated   Number Germinated     Number Germinated   Number Germinated   Number Germinated   Number Germinated     Number Germinated   Number Germinated   Number Germinated   Number Germinated   Number Germinated     Number Germinated   Number Germinated   Number Germinated   Number Germinated   Number Germinated   Numb	lient/Proje	i A	MATTERS		Test Sub	stance:	34		***************************************			***************************************	
(°C) (%) (inhg) A B C D E wors inners inners   (°C)   (%) (inhg) A B C D E wors   (°C)   (%)   (°C)   (°C		dwa	Relative Humidity	***		Zamp	er Germin	ated		i di		-	
Mit above     26.0     26.1     26.0     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1     26.1 <th></th> <th>Ç.</th> <th></th> <th>CO T</th> <th>&lt;</th> <th>ထ</th> <th>U</th> <th>۵</th> <th>w</th> <th>S S S S S S S S S S S S S S S S S S S</th> <th>S</th> <th>() </th> <th></th>		Ç.		CO T	<	ထ	U	۵	w	S S S S S S S S S S S S S S S S S S S	S	() 	
35.3 32.0 32.4 4 3 4 4 5 MV 64.0 MV 64		j Ž		Ž	d	W	3	*****	سلد	**************************************	Ş	ŝ	
35.3 32.0 29.8 4 3 5 4 5 MM GBAD 35.0 38.1 2 4 3 5 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				Š	9003	3	,	37.	Y	~10000110001	2	3	
24.7 34.7 34.4 4 5 5 4 6 300 3300 24.1 3 5 4 5 6 300 3300 34.1 3 5 4 5 6 6 3300 34.1 4 4 3 5 7 4 5 6 6 3300 34.1 5 34.1 4 4 3 3 5 4 5 6 6 3300 34.1 5 34.1 4 4 3 3 5 7 4 5 6 6 300 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1 5 34.1		Ž.		° %	tonger 	M	4	5	5		Z	28	
24.12 38.0 29.4 4 3 5 4 5 6 1800 24.15 38.0 29.4 4 3 5 4 5 6 60 1800 24.15 38.0 29.4 4 5 3 7 4 5 60 100 24.15 38.0 29.4 4 5 3 7 4 5 60 100 24.15 38.0 29.4 4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 3 7 4 5 60 100 24.15 38.0 29.4 5 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15 38.0 29.4 5 60 100 24.15		2		C.P.		V	7	ester.	Va				
28.0 29.4 7 5 4 5 6 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6		o O	The second	78.75	5	(V)	V	2	V		8	1300	
2417 21.0 29.4 4 3 5 4 5 0000			0,0%	2 2 2 3	<b>"</b>	~	J.		V	-	C.A	8	
		gerlage Times		7	J	M	<b>L</b>	T.	6		12	37.3	
	/	/							***************************************				
	ယ												
	_												
	00		/	•					***************************************				
	m							•					
					1			•	. Dereve de				
	çool					/		•					
	7							•					
	m												
	S												
	ın												
	· · ·										4		
	···/								***************************************				
											W	$\mathbb{Z}$	8
								, , , , , , , , , , , , , , , , , , ,		200000000000000000000000000000000000000	***************************************		~
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	SA OLD X C. CLESS X						soci						

																	# 1 # *	-							
Average Root Length (mm)			in C			***************************************			İ		200001.1		\. \. \.			***************************************		57.9					- - - - -		
Root langth (mm)		107	20	20	**************************************	60	99	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			8	8	36	\$ 8 \$		20	× + +	2	80	****		5	~ C ~	3.6	
Average Shoot Length (mm)			ly in a			**************************************		7007	p	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			4		* 1	***************************************					AND CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRAC		, r,		**************************************
Shoot length (mm)	7		73	7		027	±07	S	0.00	***	2.3.2	8	22	707	22	252	7	745	202	***	63		222	57	239
Seed	<b>₽</b> ~4	n	m	77	ហ	m v, w e n						2,	m	4	ហ						ş\$	**	មា		
Rep	•••••		«			**********		@				W-rannon.	v					٥			d		i.i.		

Data Checked and Approved M

Tetra Tech, Inc Ecological Testing Facility

FINISH Date/Time (MMDDYYYY HH:MM):

877877

Test # 7604095

START Date/Time (MMDDYYYY HH:MM):

Page of

Client/Project: 以內以內丁。 以在正外

Test Substance: Sil - 2当がら

and the second second second					
3 0	Number of	Number of Seeds	Percent	Total Dry	Mean Dry
ž Ž	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
⋖	(A	5	0	\$ C N	ES.
හා	V	4	ç	452	× 5 5 1
U	r	v	00	200	41.00
۵		v	C		3
w	<b>\</b>	4	۲		

λeΩ	ğ	2, 0		
	0	 800	3- 8-	-
Baranden	- C C C C C C C C C C C C C C C C C C C	(ms) Ha	Light int. (umo! m²s¹)	WHC (%)

,	*********	·	ge			***********		·	
ļ	2		Z	Z	<u>م</u> د	\ 	\$	() (§	\$
			Ž						
* (* * * * * * * * * * * * * * * * * *	2 2 2 2								
	لمضا	٥	٥	0	٥	٥	0	Ŋ	. Sjerr
ated	۵	9	0	0	q	دے	0	<u>ح</u>	<u></u>
Germir	ပ	۵	0		۵	0	Maayun	(~	بسأ
Numbe	ထ	0	Q	٥	9	٥	٥	R	W
			0						
Pressure	00		2	Ž	2.9.8	\$ 6.00 6.00	Z	Ċ.	v B
Relative Humidity	(%)	2	\$7	3 \$	32.0	38.0	2	28	Ç
Temp	2	つ 表	P Z	Š	27.4	23.2	42	É	Ž
200	ž 3	0	emi	~	m	4	S	9	

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

Page ≥ of ≥

Tove
<b>A</b>
8
Checked
C E

romano ano ano.	3 8	2 2			-	12/18/18	30				
Clien	Client/Project:			Test Substance:							
	Ž	NAWATO NATION	***************************************		-	Sil-297-62	3		<b>d</b>	***************************************	
ľ		200000000000000000000000000000000000000									
25	<u>a</u>	Relative Humidity	Pressure		Numbe	r Germin	ated	***************************************	S	, L.	0 E
3	e	2	â	<	ක	v	۵	w		3	*
00	Į A	2	Š	V	~	\ \ \	V	5		Z	3
മ	r Ta	° <b>9</b>	J K	\ \ -	J	<b>.</b>	L	w.J		£	ž
10	Ŝ	2	F Z	<b>V</b>	Ť	V	C.	J		£	ß
bood Soud	/s	2%	23,4	ν.	° 20000.	<b>\</b> 2	h	<b>.</b>		R	// CON
25	e F	24.0	ci 87 (1	V	.3"	V	V	Š		Œ	8
ಭ	9	9	7,67	h	J	h	<i>\</i>	I		K	8
2	ä	0,0%	r	V	2	V	L	3		2	3
ដ											
9		/									
13							<del></del>				
82			:						***************************************		
ಧ											
20	4										
M				/							
8					/	/					
e R					************	/	/				
S							7	/			
Ŋ								/	/		
92											
23											
8											/

Tetra Tech, Inc Ecological Testing Facility

Average Root Length (mm)		4	7					♣ 					24.2		*			~! ~` ~`							
Root length (mm)		50	3		~~	>> ~	Š	3	.Z.	Table Date of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con	<u> </u>	7	\$. \$\frac{1}{2}	S	\$	S	2		 	2			5	Ś	· rachadoupod
Average Shoot Length (mm)			رم د د							3 ~ .			₹ >> ~									***************************************	n A		***
Shoot length (mm)	3	£.	~ ~	K	-2 	000	8	, =	.a .d	***************************************	233		9		3	3	S		Z	ر الالا	in A	Á	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Seed	good	7	m	4	v	dovej	N	m	4	Ŋ	4-m4	7	m	v	v		7	m	4	v	kond	N	m	**	m
a W			⋖					60	***************************************				Ų					۵					w		

Data Checked and Approved

FINISH Date/Time (MMDDYYYY HH:MM): 2/18/7

START Date/Time (MMDDYYYY HH:MM):

page Lof 🏖

Client/Project:

Test Substance:

\$	Number of	Number of Seeds	Percent	100010110	Mean Dry
Ž V	Seeds Planted	Cerminated	Germination	Weight ing	Weight (Mg)
⋖	V	4	0	4	\(\frac{1}{2}\)
<b>co</b>	r	n	S	3 530	-
U	V		0	.36	7.96
۵	V	:	٥ اہ	4 0	4 00
w	4	0	0	ı	0

Day	g	80		
	<b></b>	న ప	<u></u>	Ç
**************************************		(ms) Hd	Light Int. (Lmoi m² s²)	WHC (%)

	Temp	Relative Humidity	pressure	 Numb	er Germin	ated		4 4 5 8	30 01 01 01	ŀ
کر تو ک	Q	Z	200		U		L	2	25 55 55 55 55 55 55 55 55 55 55 55 55 5	3; ,,,, ,,,,
<u> </u>		2	e de de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya d		0				Ş	ž
	ž	\$\$	2		٥				Ŕ	Ž
~~·	ž		3		0				Š	Š
~	^ * Z	0	8.		9	0	0		4	ဝ ဝ ည
e4		0,00	8						\ *	25
en	ų O	Ş	(A)		٥		*******		Ş	25
٠	Ł	9. Ç&	£		0				¥	ğ
Pw.	S. O	8	2.4 7		00m.n				逡	25



Ecological Testing Facility

Tetra Tech, Inc

FINISH Date/Time (MMDDYYYY HH:MM):

START Date/Time (MMDDYYYY HH:MM);

Page ≥of ≥

Ĭ Ō				r N N	rinish date/ ime (niniluy y y mr.ww/;				
	S 5 5	<u> </u>		3.6.0	12	8/8			
Cien	t/Projeci:			Test Subs	ance:	80			
	2\$\$Z	M#TTON			T S	9			
Ĉ	dma	Relative Humidity	Pressure		Numbe	Number Germinated	ated		4
ŝ	Ç	8	00 20 20	<	සා	၁	۵	w	NOIRS
00	4	2	7,0%	3	Q	200000	*99000	٥	
Ø		2	I Š		ત	.edggd*	Woon	٥	
2		9 7	s Š	J"	U	*****	<b>~</b>	0	
4~4 8~4		12 2 3	ı	ï	a	~~ax	***	Ø	
77	SS	Ž.	Ų.	J	U	ж.,	•••	ρ	
m	٤ :	Ö	7,67	<u></u>	~	*****	~~~~	0	
꺽		0	i.	J	<b>'</b> M	3000000	***************************************	0	٥
ħ									
ద్ద		***************************************							
2									
8									
ಧ									
20									
N				7					
22						/			
23									
Ħ									
ĸ								/	
8									
2									
82									
	Tetra Tech, Inc Ecological Testing Facility	>	O sa sa	Data Checked and Approved	h qa yo yo yo	4			
		•				- Ambo			

Š 1<u>0</u> 77

2 7

Z Z 55 0 0

Time

<u>...</u>

8

Ø Z

Ecological Testii Tetra Tech, Inc

Test # THOUGH

<i></i>	·····					y	*********				·		·········			y				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·········				
Average Root Length (mm)			**************************************					o e r		<b>.</b>			,	<b>3</b> 000000000000000000000000000000000000			×**	oo.	·			•••••	****	***************************************	
Root length (mm)	Ĉ,	 .3	2 2	3.00	tamas	Z	?	ř	escape de la constante de la c	ı	<u>`</u>	**************************************		· · · · · · · · · · · · · · · · · · ·	cae ^{con} .	Č	******	constitu	*****	spelan	¥¥#	******	w.	w	- Among
Average Shoot Length (mm)			7 08.2%				· -			*		·	ر د د		4		\ \ \ \ \	3							2
Shoot length (mm)	T	30		25	ones,	Y SS	7	3		20000	255	oppose.	- Adaption		garas.	25.0	· m		Vacaban.	*****	******	······································	**************************************	1	
Seed	quid.	7	m	7	ທ	q-m ²	r	m	<b>*</b>	w	emi	2	w	*	រភ	deed	M	m	4	វេ	quel	7	m	44	ທ
G-8		ii	< <	š	i	1		60	i	i		Li	i	é		i	<u>i</u>	0	ii				ii	i	

Data Checked and Approved

Tetra Tech, Inc Ecological Testing Facility

Weight Data for C. melo Root and Shoot Growth

		***************************************	Start Date (MMDDYYZ) Orying Time (HH:NN);	MIN 2/2/20		End Date (MMDDYYY); Weighing Date (MMDDY	
Analyst: 1880	***************************************		Client: NAVATO NATION	NATION	***************************************		
***************************************		***************************************	***************************************	***************************************	***************************************		
	000000000000000000000000000000000000000		ø.	\$	O	2	00000000
₩ 6 7 8	Д <u>Б</u>	Weight of boat		Total Dry Weight	Number of	Mean Dry Weight	Remarks
		ĵ.			organisms		
<	ŝeo	0.38.48	4 <u>2</u> 5	74.2	S	***	
Control	~	4.25.	Ŷ	3.03	r	2.62	
70000	m	7678.7	2684.2-	8 >	S	-	
	4	2,23,4	0 5 7	•	r		
	ហ	2714.3	23665	47,2	4	8	
Š	ngooox .	5 <b>6</b>	2	- - - - -	Ś	24.73	
<u>ئة ( الحرا</u>	N	ر د د	- 19 19 19 19 19	0 1/2	r	2 . 2 . 9	
7	e	2855,5	かわれ		V	30	
200	<i>6</i> 4	2476,3	5886	3 4 2 . 2	U		
	L?	), i 69 K	3,63%	99	4	w	
	3000	2814.S	5.0886	8 8	is.	~	
5 8 1.7	N	24.5.3	Š	X 4	S	76°3	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2705	¢ ¢		r	2 2	
2	44	26935			S	* 8 E	00000000
	L?	\$669±7	#:86£	1	Ą	, a	
	- The second	282 7.5		288		~ F	
	7	26238	7,040,9	2	r	4.2	3
	er)	インドン	3039.3	450.6	h	0 0	
	4	_5'215'T		\$\frac{1}{2}\tag{2}	r	u	00000000000000000000000000000000000000
	u)	7. 2.	9 C Z	, ,	4	524 6	
	****	क्रम्पतः, प्रभाग्रज	೧೮	,000,000 ,000,000 ,000,000 ,000,000	4	2 9, 2.15	
	7	2,656,6	37135	6.95	r	- B	
ŝ	~	5; 3 7	0 2 E	8	_{production}	~ ~	
Ž	***	0.2986	\\ 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	27.3	.200A	27,2	
	r.	7 Å	†'0},*\	S _O	0	d	
0 3 2 2	⋖					0000000	
2012	α						

or an an an an an an an an an an an an an		***************************************	C	60 91 500 5	5 W 6 . 1 / 5 Se	, or so that the second of the	
	**************************************	***************************************		um) Ayns		Vergning Date (WMUDYYY)/#X/44/8	MUUYYYJAZ
Analyst: 1125	***************************************	00000-000000000000000000000000000000000	Client: NAVATO NATION	2017.202 2017.202			IO.
Test C	Replicate	Weight of boat (mg)	Dry Weight of foil	B.A Total Dry Weight of organisms (md)	C Number of organisms	Mean Dry Weight of organisms	Remarks
	***	240.0	ĒŽ	7 6 7	4	14.215	
5-2±-50	2	2269,5	4845	708.7	<u> </u>	5.70	
Ž	æ	297	0.98,8	89			
*	4	7690,5	4	450.7		4 10 10	
	က	7454.5	7464	1	0	C	
2 1 30 C	ţ	2810.0	2433,8	113.9	\$	22.76	
5	7	244.3	3860	1587	Ġ.	39,675	
Ç	က	1 2605 (A	9:3b?K	B	r	86	
53	4	3410	4.4.X	7.10	n	20.24	
	တ	3600:0	2675.8	o^	4	74	
8	,	1.885%	d: 23.7	4	b	20,000	
\$-450 2000 2000 2000 2000 2000 2000 2000 2	7	78438	**	303.3	4	528.56	
Č	n	3649.6	748°	398.8	ک	3 - 3 - 5	
100	4	7576.7	20000	494.1	2	98.94	
	တ	75,48.4	7.24.1	530.4	4	132.6	
2000	ş	287 C.O	33.58	4	"agenes		
う。 記述 - 「気	2	2403.0	4			7.3	
¥ 83	ന	76.43.4	8.74	b 25	2	2.92	
*	44	2847,9 -	4	2,2	7	5	
	v	2914.5	3,562		~~~		
	· pour	2,5%; 2,5%; 2,5%;	9 6 9 9 4	9.08	1-100001	3.08	
	7	26516	ZAM 3	67.7	agentati	91,1	
(m	9.6 9.00 0.00	T. C.	3.102	~	8.00	
× × × ×	4	2526.	*. \$	448.2	2.	724.1	
	w	J. (10. J	5		, sauce		
C Associate	X						
25.00	•						***************************************

Weight Data for C. melo Root and Shoot Growth

Control Test ID: 7 COM(1)	\$0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		Start Date (MMDD	Start Date (MMDDYYY): 12/4/18	93	End Date (MMDDYYY);	72
Drying Temp: 100°C	728		Drying Time (HH MM): 241%	78. Zu		Weighing Date (MMDDYYY): A	MDDYYY: A
Analyst: VW			Client: NAVATO NATION	NAT 10N			***
			haanaanaanaanaanaanaanaanaanaanaanaanaan	<i>Madaddiinainainananananananana</i>			***************************************
	***************************************	≪.	a	\$	O		
	Replicate	Weight of boat	Dry Weight of foil	Total Dry Weight	Numbero	Mean Dry Weight	Remarks
500000000000	nocionalistical properties de la constantina della constantina del	Ö			organisms		
S	\$ ~~	7673.4	2677.5	¢,	4	0.025	
7	Ŋ	\$ 100 x	J J	7.85		P	
× × × × × × × × × × × × × × × × × × ×	ന	2078.3	7300.9	22.3		22.7	
3 3 3	d.	87-62 B	8743.6	4	M		
	រោ	2438.7	? ************************************	29.9	ಚೌ	1	
	£	- KBS) jążą	2 9 1 8	d.	1445	
ī L Š	<	226	\$2.50 \$1.00	489.2	· &	97.84	
	ಣ	<u>ئے</u> چو	₹ \$ \$	Ö		2	
/ 8 5	***	2593.8	1858.3	7645	n	28	
0.0000	ហ	\. \.	, 0 8 9 9	2.92.5	60	5	
	ş	2032	>,		tega.		
	7	3,683	4	s V	- C		
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	m	Å Č	3.7	4 4	h	о. 4	
	*	2 2 2	ć	ر د د د	r		
	n	Š	ŕ	2 2	b	æ.	
	<i>\$</i>	2	, sont	344.3	range.	96.89	
	7	ů Č	2244	412.2	Ž	4	
Š	m	60	2087.6	7 8 9 ° K		7.92	
5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4		K	6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	Ţ	ь Ф Ф	
	w.	766	32.4		.		-
~ () ()		3. E. P.	3.8%	0 2	2	S	
	2	22.5	Y B Y	12.4	Å,	<u> </u>	
× × × × × × × × × × × × × × × × × × ×	***************************************	0,04.04	* \$ \$ \$	23	4	V	
o } } 	4	222.6	5,22,5	9 9 8	5	80.	
	S	2066.3	0,4,4,	μ τ	7	V &	
# 2 2 2 2 2 3	<						
972 25 25 27 20 27	æ		200000000	додоцосо			

Weight Data for C. melo Root and Shoot Growth

		***************************************	DIVING 1 IMPE (HH. MM): ANIM.	4441), Q"1841;	***************************************	and the second s	magamangan ang ang ang ang ang ang ang ang an
		**			·		
	Replicate	Weight of boat	Dry Weight of foil	Total Dry Weight	Number of	Mean Dry Weight	Remarks
		(Bu)			organisms		
S	400	% % %	7387		7.	p. 4	
	7	3,464,6	Ž	5 6 6 C	÷	1 2 3 3 4 3 5 6 6	
V	೯೦	2304.5	2539:1		*	7.	
Z Z Z	4	2049 G	カーカンで	4019	Å	98.38	
	យ	१ ८५५ १	ことと		2	36.18	
	den.	\$ 600	> < 5	7	S	7.85	
	N	Š	s S	5 5	r	ON	
	m	~ ~	7,57	~ *	4	S	
>	4	3,000 %	~ % %	43,5	M	4 (V	
	w	968,6	E E E E	765		U.	
	-genne	\$.64 €	₹ ₹	75.0	r	850	
	N		7 3 8	4263	L	85.26	
	~	9.X.e	K T		Ą	10.275	
>	4	<u>R</u>	£	2 33, 3	m		
	w	22	& 0 7 7		Ľ	12.26	
	2000	1,001,3	さごを	6.511	V	23.18	
Ž Ž	7	229	e E	L.3 &	V	*	
	m	Ċ C	E	41.2	4	20.0	
3 3 3	4	000	\ \ \C	000	4		
	ĸ	, Kara	5	25.29	H	5.625	
	<i></i>		(543.3	8.22+	\$	91.58	
	7	レジュ	t.(8).C	74 . 2	,	69.24	
	m	2032.4	S.E.	7.99.1	4	4 C C C C C C C C C C C C C C C C C C C	
	4	* \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	6 T T	6.038	4	90.225	
	ಬ	0.52	۲. در	2.85.3	4	- 22 - 22 	
ž a	٧						
))	ω						

Tetra Tech, Inc. Ecological Testing Facility

Page Sof S

End Date (MMDDVYV): 12/18/18 Weighing Date (MMDDYYY): A/A// 2

/ 20 20

Start Date (MMDDYYY): 12,

Control Test ID: TEAMORE

Drying Temp: IIbu 🛠 Analyst: 🔊

Drying Time (HH:MM): AMK;

Remarks

(B-A)

(Bu)

and organisms

Weight of boat

Replicate

Test ID

(BB)

220916

(505 B

2033.9

1826. K

23

1830

(r) S. w

CZ SIS

2-54-45°

S. C. C. \$ \$ \$

2677.C Š

7209,0

 \sim (")

节华了3

34660

33060

743.0

2356:0

44 ເຄ

Skells

থ ഗ

N ന (A) (b)

4 w

30% O

26.983

10.68 2.5 400

Q.

0.875

83.32

i. az

#	٠
Approved	
aug	
ecked	

 $< | \omega |$

Sanks

(*) T. ഗ

N

Cucurbita pepa Toxicity Bench Sheet

Test# Nov035

FINISH Date/Time (MMDDYYYY HH:MM):

12/19/18

START Date/Time (MMDDYYYYY HH:MM):

Page _ of

Client/Project:

a e

« ಯ **a**

w

Navaja Ažim

Test Substance:

Wean Dry	Weight (mg)	. v.	ر ر ر ر	20.35	% 4 %	¥0.2
Percent Total Dry	Weight (mg)	0	7. 7. 8	٠ ټ	80	^
Percent	Germination	O 30	0	ů,	Ş	2
Number of Seeds	Germinated	4	4-	4	r.	
Number of	Seeds Planted	(n	()	m	(^	V

Day	<u></u>	0	ري <u>چ</u>	
ραλ	٥	<u>.</u>	ð	X
		ins) Ha	Light Int. (umol m² s¹)	WHC (%)

, ,	32	Š		2	3	23	\$	S	Ë
\$ \$ \$ \$	7 2 3 3				2	*			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	í	Ö	~~	\$0	\$	-	32	200	Ş
	LL.	0	٥	0	0	0	0	10g00000	
ated	Ω	٥		0	0	q	d	· ~(~
r Germin	U	0	0	0	0	C	9	0	0
Mumbe	co:	0	0	C		9		W	W
	<	0	~~	0	٥	d		C	J
Pressure	ĵ.	300	Z	ے چ	% &	Ø 8	ئ ئ	C	Y,
Relative Humidity	\$	K	8	o â	2000	0	2	ŠŽ	2
Temp D	O	Ç	Y K	Ź	Z	9 67	Ä	t)	4 K
ĉ	~~~ 2 2	0	gord	~	m	4	n	ω	r~

Ecological Testing Facility Tetra Tech, Inc

mu

in a

<u>.</u>8

38

Page 2 of 2

* 1/4/19 RS

STA	START Date/Time (N	(MMDDYYYY HH:MM):		ä 5 8	FINISH Date/Time (MMDDYYYY HH:MM):	ime (MMDDYYY	ŧ Z s	ä	
Gien	Client/ <i>Project</i> : \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Test Subs	Test Substance: しがでんし	Ş			
	Ţemp	Relative Humidity	Pressure		X	Number Germinated	ated		
Š	5	8	20 30 30 30 30 30 30 30 30 30 30 30 30 30	4	ಐ	U	۵	Ŀ.J	Z O E S
80	×,	2,5	Z	3"	n	٥	4	******	285
97	ć. K	9	Ž	T	W	0	4	énggg	2
2	Ċ.	2	S		W	co-coco	rs	Manager	3
;(;(~	02000	z,	7	ż	0		*****	S
q	10 S	344	L, P.	2	3	10)	r		3
M	00 07	0	7.57		÷	M	N		Ş
4	Ŝ		X X	J-	5	2	ď	_	S
ņ	4	Ş	r Ž	7	7				Ş
ç								8	
F-4	The second secon								
00									
ņ	***************************************		7						
8									***************************************
~~ ~~				/					***************************************
R									
2									
Ş									•
Ŋ							***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
79									
5									
82									
	Tetra Tech, Inc Ecological Testing Facility	>	Q	Data Checked and Approved <equation-block></equation-block>	nd Approv	A Pa			

3

go E

8 3

Z

Š 300

Ecological Testing Facility Tetra Tech, Inc

Average Root Length (mm)			\rangle					54.98	· · · · · · · · · · · · · · · · · · ·				lo co					? 2 0				\$	<u></u>		
Root length (mm)	0		<u>\</u>		***************************************	07	8	5	\$	**************************************	I	~	£	:10 1997	ormoodimineessestym,) have	Z	the second second	***************************************	regangementation (IIII)	95	484444488	agramman and shirt		***************************************
Average Shoot Length (mm)	43.25								m	3															
Shoot length (mm)	C	22	n	Z	shine and the same of the same	v C	22		<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0	Š.	3	**************************************		Z	***************************************	agenge paratter	· · · · · · · · · · · · · · · · · · ·	3	annua annua annua annua annua annua annua annua annua annua annua annua annua annua annua annua annua annua an		grammagamana g	· · · · · · · · · · · · · · · · · · ·
Seed	₹~\$	7	m	4	ហ	e~4	N	m)	44	m		73	m	Ţ	n	hod.	7	m	**	ın	₩-d	R	m	4	S
2 2 4			<	***************************************	:			a a					U										u.		

Data Checked and Approved

Page 2 of 2

Cucurbita pepo Toxicity Bench Sheet

START Date/Time (MMDDYYYYY HH:WM):

Page Cof 2

White Market

Client/Project:

FINISH Date/Time (MMDDYYYY HH:NMM):

12/19/18

Test Substance: $S_{ML} = 177 - 01$

Mean Dry	Weight (mg)	24 73 73	42	ا ا ا	79.93	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Total Dry	Weight Tage	90	60 90 4-	~~	52.9	c V
Percent	Germination	9	ф О	Ç	000	ç
Number of Seeds	Germinated	2	Ť	m	ď	Ġ
Numberof	Seeds Planted	S	M	M	Ś	V
0)) (⋖	æ	v	0	w

i was in a second	ä	è
	٥	P
US) Ha	φ ο Ο	4
Light int. ($\mu mol m^2 s^3$)	æ.	Ť
(%)	Š	

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		raaaaraa	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					pangkania	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2	Ş	(X)	8	V Z	<u>ک</u>	8	Š	<u>e</u>
200 200 200 200 200 200 200 200 200 200	57 70 80 80 80 80 80 80 80 80 80 80 80 80 80			8					
£ € €	s S S S S S S S S S S S S S S S S S S S								
	ш	Ø	0	0	Q	a	***************************************	ſΛ	M
ated	۵	ю	0	0		a	6000	7	691
Number Germinated	U	Ø	0	٥	9	٥		0	******
Numb	6	0			q	0	~	Μ	W
	4	0	٥	0	٥	0	0	0	Noncons
pressure	Œ	0000	Ž	X	60	8	J.	200	4
Relative Humidity	S	Ñ	ţ	Ŕ	3%	9	\$	£	
a E e	2	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	とえ	\$	222	4,58	A Z	Å
č	 2 3	0		~	m	4	v	ω	r~

S P P P
DXICITY
DG 3d
Cucurbita

Page 2 of 2

7055 # 1704076

	\$ \$	- Amerikan de de la composition della compositio			1				Š		
2	Project:	Cllent/Project: ' I NAVIRITO WATERONS	3	Test Sub	Test Substance:	\$\frac{1}{2} \cdot \frac{1}{2}	Ţ		6	***************************************	
ļ	Temp	Relative Humidity) Pressure			Number Germinated	ated			8	
	Ş	8		<	ထ	U	۵	l.i.i	S		0./ E.
	Ä	Ŝ			M	20200t ⁰	Μ	M		3 2	8
	Ź	2	i K	,,cor**	W	٦	ſΛ	Μ		34	98646
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ţ	2040.	M	СЦ	V	М		2	3
	\$\$ \$\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sq}\sq}\sq\sintitta}\signgtitta\sq\sint{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	7	9	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-3rm	~	W	M		Ĥ	3
	دء ع ش	347	4	C.	.5	M	.5"	<i>3</i> ′		3	000
	2 Ö	2	7, 87, 7,	C.I	Ĵ	ţ.	j	J		4	8
	# #	Â	>- *\	4	. ">>>-	ŗ		٠.>-		R	É
	Š	°.	X		ン	140	>	3		S	Š
/											
					e.						
			1								
				_							
					/						
					/						

Tetra Tech, inc Ecological Testing Facility

Data Checked and Approved

Average Root Length (mm)			4.00					r v					m Z				,					~)		
Root length (mm)	9	Ş				Ŗ	4	Ŋ	2		89	Y,	0			\$9	***	8	\$		0		EE	72	
Average Shoot Length (mm)		×	~					0				9						^ ~							
Shoot length (mm)	S S	<u>k</u>				\$	(28	S	80)			39)	\$			30	유	\$ 	######################################		5 3	Ž.	() Z	08).	
Seed	çan ş	Z	m	7	ហ	quarit	7	æ	4	ហ	₹vor¶	7	m	サ	ហ	geng.	2	m	q	ភ	quoq	~	w	***	w
S.			<					30					Ú					۵					iai	***************************************	

Data Checked and Approved

Cucurbita pepo Toxicity Bench Sheet

Page of

FINISH Date/Time (MMDDYYYY HH:MM):

Test# 14 0404

START Date/Time (MMDDYYYY HH:MM);

Client/Project:

81/61/21

Test Substance: シェースペピーロ

MAN WAR

à ê					
Mean Dry Weight (mg)	6 6 7	14700	27 0	° ° °	ATTACA TO THE REAL PROPERTY OF
Total Dry Weight (mg)	7 5	golfen	23.6	(A)	and the second
Percent Germination	0	C	0,7	07	٥
Rep Seeds Planted Germinated Germination Weight (mg) Weight (mg)	N	0			
Number of Seeds Planted	M	W	V	V	ŀΛ
ر م ص	4	œ	U	۵	LL

***************************************		Şĕ Oa∻
r n n	0	E E
(ns) Ha	0 W	4
Light int. ($\mu mol m^2 s^3$)	Š	<u>&</u>
WHC (%)	B	

į	<u> </u>	Ż	Z.	2	3	2	Ź	Š	rd F
4,40					Ł	į			
4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ດ ວິຊິ								
	i.i.3	0	٥	0	٥	0	O	0	٥
ated	۵	0	0	0	0	0	0	M00000	anne.
er Germin	U	٥	9	0	2	٩	٥	0	0
guny	æ	٥	٥	0	0	d	0	Q	0
						,	,	3	
Pressure	Oñ I	00000	3	2	3	8,8	9		r C
Relative Humidity	3	7	37	2	20.02	0 87	255	? %	<u>ې</u>
Temp	Ç	0.5%	<u>د</u> کر کر	4	57	23,6	23		6 %
č	Š	0		7	m	4	n	ای	<u>~</u>

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved 🖎

Page 2 of 5

	2 7 9	2		mm log	00/00/00/00/00/00/00/00/00/00/00/00/00/	¢c					
	/Projecti	Clent/Project	***************************************	Test Substance:	tance:		***************************************				
	NAVAN NATION	NATEON		W.3	STC- 245-0	12-0 12-0	***************************************				***************************************
		Relative Humidity	Pressure		Z Z	Number Germinated	ated				
> 3	° om Lid Lor		60 I	A	a a	J	۵	w	Z O Z O Z O Z	(2 (3 (4) (4) (4)	8
00	Š) (4	Ž	٥	٥	٥		٥		2	ŝ
o,	Š) K	٥	C	O	*******	٥		2	Š
<u></u>	Ć		F		0	*********	00000	C		2	3
6~4 6~4	2	33.0	S.		0	****	*****	٥		1.7	-
Ŋ	73.3	T.	c. 6	rt	۵	••••		0		3	2000
ಣ	5.5 5.7	1 00	2,2	0	٥	em.e.o.o	~~~	0		Ŋ	20 20 20 20
~~ ~	X	2,00	<u>ح</u>	0	0		·			Ź	Š
いる。 いろ です	4	2	K	2000*	0		w	٥		S	3
, (C)											
 (X)											
<u></u>					-					***************************************	
ą											
2											
22											
n	×										
2											
25											
53											
23											
·····											\mathbb{Z}

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

Page 2 of 2

38					
2	Seed	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
	e-i	Ç		**	
	7	778777744444444444444444444444444444444			:
«	m		N	**************************************	(m)
	4			Versign of the Contract of the	
	w				
	And	8 8	**************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************
	N			**************************************	
a	m		***************************************	**************************************	10000
	す			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	រភ				
	émi	ţ		<u></u>	
	7			V. 1000	
W	m		4 "		r v
	IJ			.,	
	ľ			**	
	1-m2	Ň			
	7	8 8			
۵	m		~~ {^^		i, V
	4				
	ĸ				
	hoof				
	7			***************************************	
w	m		į.		
	IJ			***************************************	
	ഗ			***************************************	

Data Checked and Approved

Page Lof

START Date/Time (MMDDYYYY HH:MM);

<u>9</u>

Client/Project:

NAMA NAMA

2/2/20

FINISH Date/Time (MINDDYYYY HH:MM);

10-040-148/N Test Substance:

Weight (mg) Mean Dry Weight (mg) Total Dry Germination Percent 0 Q Number of Seeds Germinated 0 0 Seeds Planted Number of V യ യ യ

0

O

a

LL.

C. œ (J

\$0 \$4 \$0 \$4 \$0 \$6 \$0 \$6 \$0 \$6 \$0 \$6 \$0 \$6 \$0 \$6 \$0 \$6 \$0 \$6 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	ä) Day
	0	D L
TS	0 66	9
Light Int. (umol m ⁻² s ⁻¹)	2.	5
WHC (%)	<u>%</u>	

į	dual	Relative Humidity	Pressure		Mum	er Germin	ated		A 2 at 1 at 2	š	,
> 8 3	2	(%)	,000 ,000 ,000	: :	ක	v	۵	ш	SON COL	200	IJ
0	Ş	Ñ	recoor	3	٥	0	0	0			
t	Ÿ	Ć	~		0	0	0	0			7
N	4	Á	2.8	0	0	0	9	0		3	8
m	23, &	32.8	2 2 2	3	9	9	0	9			8
4	ب م	0	8	:	٥	0	q	9			S S
'n	ć	Š	9 Ž		0	٥	0	0			b
ဟ	T.	Ş	Ç.	:	0	0	0	0		S	Š
K	たる	2	V Š		٥	0	0	0			<u>\$</u>

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved NO

Page 2 of 2

92
Approved
<u>a</u>
ta Checked
(A)

	2500
<u>u</u>	
Tetra Tech	FCOICE

44	\$	C. C. C. C. C. C. C. C. C. C. C. C. C. C	7.17		4	00	***************************************			4.000	
È	Project:	roject: NAVIRTO WATEUN		lest Subsi	tance: 	42	Ç		***************************************		
	Temp	Relative Humidity	Pressure		Numbe	Number Germinated	ated		***************************************	***************************************	i
à S	ಾ	8	,000 ,000 ,000 ,000 ,000	<<	ස	U	۵	i.i	ZOZ SB SB SB SB SB SB SB SB SB SB SB SB SB		
	Ž	2	K	0	0	٥	0	9		2	2
	<i>1</i>	2	Ķ	0	0	D	0	0		2	9330
<u></u>	Ç	9	S.	0	0	0	0	0		Ş	2 8
gard gard	Ç. Şi	Š	Ţ	å	٥	٨	0	Ü		\{i	3
72	7. 2.	0 56	49.00	9	0	٥	0	0		3)	38
ದ	ij	0,3%	Q S	0	0	٥	0	٥		d	8
Z,	ľ	? Q	, i	0	0	۵	0	0		Ś	
۳,	 	Ź	Ž	0	C	0	0	٥		Ž	3
Ü											
œ					·						
<u>a</u>		7									
 97							1				
77											
 8					/	/					
							ľ	,			
 K											
23											
									****		1

Average Root Length (mm)			on a	į				***			W fr							values	••••	•••••	***************************************			••••	
Root length (mm)	**	8	'automate automate a		**************************************	***************************************	***************************************		**************************************		1	**************************************	·		· · · · · · · · · · · · · · · · · · ·	, 4000000000000000000000000000000000000	::an-measta::iiiiiiaaaaaa-iii	(;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	///////////////////////////////////////		***************************************	**TETROLOGICAL TOPO TOPO TOPO TOPO TOPO TOPO TOPO TOP	***************************************		
Average Shoot Length (mm)			***************************************	, comme			1	ı			***************************************	•	1		•		3	***				:	•		•
Shoot length (mm)	and the second	and the second second	geografia de la composition della composition de	***************************************		**************************************	***************************************	,	***************************************	, account consequence of the con		***************************************			***************************************	***************************************	***************************************	***tookkaaga,aasaastiro		***************************************	***************************************	***************************************	***************************************		
See	Second	7	m	4	ហ	good	7	m	4	v	žmį	7	m	4	w	donj	7	m	4	ഗ	\$-oo\$	7	m	4	ഗ
Rep			⋖					.				·~~~~	U		•	,		۵	······································				iui		

START Date/Time (MMDDYYYY HH:MM):

Page of Of

FINISH Date/Time (MMDDYYYY HH:NM):

81/61/21

NATE NATOR

Client/Project:

Set - 280-0 Test Substance:

e20000000	*****	**********	**********	************	~~	0000000
Mean Dry	Weight (mg)	\ \ \ \	8.9		600,	***************************************
Total Dry	Weight (ng)	2	6.9°		99	*
Percent	Germination	40	50	0	٥	C
Number of Seeds	Germinated	7		٥	0	C
Numberof	Seeds Planted	ſ	V	W	V	V
S	3 2 5	⋖	223	U	۵	iái

* 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		۸eO
rdidilitalia	_	T L
(ns) Hd	ص الم	<u>C</u>
Light Int. (umol m² s¹)	8	3 5
WHC (%)	, 20,	

Ě	a E e	Relative Humidity	Pressure		Kumy	er Germin	ated			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ķ
2	2	8	Œ	ব	ක	U	۵	w	Ç Ş	7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1
0	2	不		0	٥	٥	0	0			25
end		8	2	0	Q	0	0			3	Ž
~		26.0	9,50	0		0	0	0			3
m	0.4	20.02	8 6 2	C	a	0	a	C			
4	73.6	0,87	2 6 7	٥	9		0				33
ın	2,2%	2 5	3	C	0	0	0	0			\$
ဖ	e ke	2	Š	Moores	0	0	٥	0		•	C.,
~	<i>₹</i>	Š	K.		W0000		0	0			É

Data Checked and Approved

2014

Page 20f 2

			***************************************		17	2					
t e	/Project:	olecti i Navitas viannos		Test Substance: රි	stance:	Ne: Soit - 200-61	Ş				
Č		Relative Humidity	Pressure		Numbk	Number Germinated	ated			*	
<u></u>	5,	8	00 II.	<	යා	v	۵	w	e S S S S S S S S S S S S S S S S S S S	2 2 2 2	Ů E
80	S	?	L Ž	,-1110	************	٥	0	٥		Ź	8
Ø	X	2	3	w ₀ ,,,	*****	C	ට	0		3	
of O	(\(\lambda \)	0	a K	**************************************	6 0000	0	V	0		3	2 _3
6-4 6-4	Ĉ	Ŷ	Ÿ			٥	****	0		Ŋ	3
2	25.3	36.7:	ر بر به			\circ		9		3	86
m m	5. A	0 %	7,67	N	~	0	0	O		153	28
~~ ~~	Ä	2	¥.	~	*****	٥	0	0		£	-3
'n	Ŕ	o Ý	K	N	******	0	0	ે		8	Ğ
<u></u>											
Ç		1									-
											
(7) (4)			/								
2											
 M			/	/							
 N				/							
m											
							V				
 22											
23											
 Si P											<i>\\</i>

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

ED_004888_00000097-00361

yerres.															******	<u> </u>									
Average Root Length (mm)	***************************************		\$				***************************************	0					Marchine .					· reactiff.			***************************************		***************************************		
Root length (mm)						?																			
Average Shoot Length (mm)	1977 11 11 11 11 11 11 11 11 10 10 10 10 10						;	 					****								***************************************		viin.		
Shoot length (mm)	₹9	<u>z</u>				m G																			
Seed	food		m	4	S	šoo.	7	m	et.	ហ	Secol.	7	m	Ť	m	guad	7	84J	4	រោ	good	7	m	**	V
8			⋖					C					Ų			***************************************		۵					w		

Tetra Tech, Inc Ecological Testing Facility

START Date/Time (MMDDYYYYY HH:MM):

Client/Project:

FINISH Date/Time (MNDDYYYY HH:MM):

81/61/71

Test Substance:

	Number of	Number of Seeds	Percent	Total Dry	Mean Dry
W 5	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
	V	4	0000	00	24.5
	V	ŀ	0	72 9 8	47.
	v	ţr	Ç	i V	35°
	V	4	\$	2.0.4	7. cy 2. cy
	V	₫	ç	a c	

on or the second control of the		>*C
	0	2
TS Ha	ය රජ	4-
light int. (umoi m² s²)	Z	ŝ
WHC (%)	R	

Ĉ	Temp	Relative Humidity	Pressure		Rumb	er Germin	ated		25 de de de de de de de de de de de de de	2000	
2	٥	8	DÇ.	<	æ	Ú	۵		2 3 2	2	3) 30 30 30 30 30 30 30 30 30 30 30 30 30
0	o á	Z	spooders	٥	٥	0	٥				55
P==	Z	X	3	0	0	0	0				7
R	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	2,0	25.6	0	d	P	0	Q		3	2
m	7 4 6	29.0	2.2.8	9	٥	Ø	q			-	0
4	5.3.3	30.0	8,67	a	0	0	0				0
un i	Ŕ	2,2	ر م	0	W	(۸	M				S
æ	Ć.	2	Ž.	0	(n	V	J				8
	? Æ	6	Ą	0	L	6	, iju				R

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

Page 2 of 3

Test #TLOSON

Client	Client/Project!	oject:		Test Substance:	tance:	-07 SE			**************************************		
è	Temp	Relative Humidity	Pressure		Numbe	r Germin	ated		4		
> 2	0	(%)	Jones, See See See See See See See See See Se	4	යා	Ç	۵	w	2 5 8 8	e C	E E
00	<u>4</u> 7	2	r K	J	L	h	J	3		2	8
m	Ź	9) Ţ	*	V	1	J-	.		\$	18
<u></u>	3	3	9	3	7	4	J	50,00		13	3
pool prof	~ ~	3,4,0	Z i i	ooger -d.	6	7	angle .	h		4	75.0
(Y	м М	.;××.	ر در	5	V	V	2	V		9	(35)
س س) :	12-1/4 24-24 X10	2.52	<u>.</u>	5	\ \ \ \ \	÷	***		G	8
~~! ~~!	4	25	2.	>-	L	\ _	>	7		Ş	35
شا الكا	₫´ 2 * 6 *\$	٥ ع ا	r F	<u></u>	<u>ر</u>	L	>	3-		3	3
2										*	
Ç		1									
8											
Ö,			7								
20							•				
21											
22				/							
73											
24			-6				17				
z,									3		
92											
27							d				
ø											1

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

Average Root Length (mm)

Root length (mm)

Average Shoot Length (mm)

Shoot length

Seed

8

<u>...</u>

 \sim (4,) S. U)

4

Z

00

~.Q

m M

Ģ

S

ر د

100 N

) J

ന 42 ሬኖን

 \Box

Ş

20

~

4 i. So

N ന 蚧 w

ණ

2

N ന ব ហ

್ಟ

4	************
Approved	
and	
Checked	
g	

2014

~~~

 ∞ S

> m S.

للله

Tetra Tech, Inc

Test # TE046281

₹ jo → ased

START Date/Time (MMDDYYYY HH: MM);

82 2

Client/Project:

CERTAIN CHAN

FINISH Date/Time (MMDDYYYY HH:MM):

01/01/2

S-38-09 Test Substance:

Mean Dry Weight (mg)	ď	7 7 7	28	26.93	r in
Total Dry Weight (mg)	7	m m	4	80.8	L P
Percent Germination	7.0	٥	80	0	Ç
Number of Seeds Germinated		€)	ł	ęw.j	<i>~</i> ?
Number of Seeds Planted	V	4	·/	V	V
2 0 8	«	æ	Ü	۵	لننة

Bowmman	a .	Àe C
	٥	puu
pH (su)	0	9
Light Int. (µmoi m.² s.¹)	Ē	5
WHC (%)	Y	

	0.	Relative Humidity	Pressure		Numbe	er Germin	ated		\$ \$ \$ \$		2000
*******	C	22	2000 2000 2000 2000 2000 2000	Þ	ಐ	U	۵	w	2)
	0	7	***************************************	0	0	٥	0	0			B
***********	\ \ \ \	0,7%	787	٥	٥	٥	9			Ž	X
i	d R	0	, o	0	0	٥	0	0			8
	24.9	30.0	8 6 7	0	d	٥	0	O		-	2
	3	0, C,	8 6 2	d	d	O	0	9		j	230
	Ä	2,	9 9	C	0	0	0	0			Ŝ
	/ 3	24	V Ž	0	W	***************************************	4	0			¥. 85
	4:5%	2	Z.	O	W	*****	B	٥			3

ED_004888_00000097-00366

Page ≥ of 2

Test # 140 4087

	(S	3 5		7 / 8 / 18		100	0 5 0 0 0 0	***			
Cie	Client/Project: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Test Substance:	tance:	3000	4				
	Temp	Relative Humidity	Pressure		Numb	er Germir	ated		4 - 2	70	j.
Š	Ĉ	Č.	20 E	4	ထ	U	۵	w	Notes	Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca C	u E
0 0	Ť	0%		٥	M	6 0	6	٥		8.	3
m	Ź	Š	I K	0	Μ	c	ત	0		Ę	3
9	ė.	Ş	90 A	0	m	M	U	æ		3	₹ 3
fj čecij	S.	0.2	T-160	٥	m	C)	m	n		M	<i>20</i>
H	4.24	Ä	4 8	٥	M	I	~	las		3	Z.
ئىن دىن	2	Ç M	7,57	0	ţ~	2000	~	N		Z	Š
~~i	Ç	Ş	ī	~6	M	3	n	m		¥	3
ry H	4.7	Ŝ	ž		*^	5-	m	M		2	8
ಧ											
S											
80											
2	500000000000000000000000000000000000000										
2											
21											
2					/						
23											
\$,			
ಬ್ಬ											
26											
23											
0				~~~							ļ

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved N

Page Sof 3

OHS.	Shoot length Average Shoot Length (mm)	Length (mm)	Root length (mm)	Average Root Length (mm)

e e e e e e e e e e e e e e e e e e e			que	boot month
2000	0		***************************************	n
*			awoo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
**			ww	
-1			\	4
	\ { {		7	
	0.7%	······································	S	7
·			\$	*
****			Yang.	
<i>\(\(\)</i>			2	:
2			<u></u>	S C
	٨		**	
		:	***************************************	
}.		*	() 'a	
-	8		V	1.
.//	Ś			
***			******	
**			***************************************	
02		·	o`	
\$	Ç	i	d.	
	>		S	3
4			>	
and the second s				

Cucurbita pepo Toxicity Bench Sheet

Test # Though

FINISH Date/Time (MMDDYYYY HH:MM):

12/19/18

Client/Project:

START Date/Time (MMDDYYYY HH:MM):

to asset

Test Substance: S立、FR-OI

i C	Number of	Number of Seeds	Percent	Total Dry	ercent Total Dry Mean Dry
ີ	Seeds Planted	Germinated inated	Germination	Weight (mg)	Weight (mg)
4	v	٥		1	***
8	Ŋ	7	15 24 40 15 24 40	ر ن م	7 33 2
υ	N	***********	0	102.6	74.2
<u> </u>	S	~~~~~	0	9	0
i.i.i	V	0	c	ı	***************************************

* ************************************	<u> </u>	Day
	0	E
(ns) Hd	ر الم	r r
Light Int. (μ mol m ⁻² s ⁻³)	2	Š
WHC (%)	Ž	

Ĉ	Temp	Relative Humidity	Pressure		Numb Numb	er Germin	ated		* 1 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×	1	
ŝ	2	8	e e		ස	v	0	w	Salon		
0	2		g garan		0	0	0	۵			
Н	7	3.5		٥	0	0	0	0		ð	ŽŽ.
7	7	9	Ž		٥	0	0	0			Ê
m	24.9	0.67	8 6 7		0	q	0	0			4
4	7.3.3		6		0	0	0	0			2
ស	S	3.5	77		۵	0	0	0			8
ယ	*	2	Z		a	*******	0	0			8
	2	2	Ž		ત	40000	Vitocone	0			2

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved

Page 2012

Pressure Number Germinated On 1 - F/L - 21 2 2 2 2 2 2 2 2 2
0000
0000
000
00
0
ox xoc
9
0
0

Tetra Tech, Inc Ecological Testing Facility

Data Checked and Approved

4	
Approved	
aug	
a Checked	
10	

													***********		**********				· · ·						
Average Root Length (mm)			ali-man.				e e	0		*	***************************************	1	۲ ۲ ۲ ۲				(° < () > ^	3	*				:	
Root length (mm)	Marijeroo <u>oottaattite</u> vii ⁿ ii	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	***************************************	The state of the s	***************************************	2	9	######################################	the state of the s	,	70	¥	J	***************************************	**************************************	N	38	0	***************************************	agrando de Caracter C	***************************************	, (C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	× 0	*******************************	Source
Average Shoot Length (mm)			\$					in C					<u>~</u>										2001		
Shoot length (mm)	***************************************	***************************************	***************************************	***************************************	***************************************	<u> </u>	5	and the second s			Ş	280	58	· ranovaranto recursivo recursos q	***************************************	9	?	2	of or restriction and the second seco			8 :	8 3	***************************************	
Seed	Sound	~	m	4	វោ	qui	7	m	44	m	bood	7	m	4	ហ	good	7	m		ហ	knod	7	m	せ	ഗ
2			<						···············				w.			~~~~		٥			ood		w		

Page _ of

12/19/18

FINISH Date/Time (MMDDYYYY HH:MM):

Client/Project:

Test Substance:

0	Number of	Number of Seeds	Percent	Total Dry	Mean Dry
2	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
⋖	V	*****	0	3,72	9,77
සා	V	130000	Ç	3.8	28.5
U	V		C	42.4	42.4
۵	v	0	O	***************************************	***************************************
li.i	'n		97	4.7.4	4 7 4

Statement (S	Õ)ay
ra:a::::::::::::::::::::::::::::::::::	٥	ü
(ns) Ha	[*,	r r
Light int. (jumoi m.2 s.1)		9
WHC (%)	2	

	a. E.	Relative Humidity	pressure		ă M N	er Germir	nated				
	2	Z	(0) I	<	æ	U	0	Lij	202	57 10 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	<u>e</u>
	0	N		4	0	0	0	0		3	
	33	2	> <	0	C	O	Ð	0	***************************************	2	Ž
00000000000000		97	3	0	0	٥	0	24	17 / 18 M.S	2	3
000000000	2.4.9	0	8	٥	0	0	0	O		ž	0 0
000000000	23.03	200	3	٥	d	0	0	0		ď	27.5
0000000000	2,0	ę ę	3) 65	0	Š	0	0	30,000		Z	8
************	とえる	35	C E	4		0	٥	60000		3	5
000000000.j	o Va	á	Ž	0	x *000,000	0	0	Vocase		2	8

Data Checked and Approved 185

2014

Tetra Tech, Inc

ED_004888_00000097-00372

FINISH Date/Time (MMDDYWY HH:MW):

START Date/Time (MMDDYYYY HH:MM):

page 2 of 3

					g.	Ź	-2 -3	70	300	8	Ž	9											amm		4
			40.00		3	Ź	Ş		3		7										Q4444444				
			900													***************************************	***************************************					/			***************************************
				ll.	20000	۰	Name -	*****	cool	***********											/	/			
			ited	۵	0	٥	0	٥	0	0	0	0									/				
\ \ \ \			Number Germinated	v	0	a	0	ADDAN'S		7	7														
	ance:	\$-100 2011	Numbe	æ		*****	*********	<>	c-6	<i>C</i> 1	*******	*00000*	. reconstruction			mmm	· ····································	***********							
	Test Subst	10-SY-1108		<	Ø	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	******			w	Macaucar							/						
			pressure	Ø,	×	Š	e E	C.J.	4 56	23.2	Z.	V.													
S		NATES	Relative Humidity	18)	0.2					0,8	Ž	Ş													***************************************
	/Project!	NAUPSO	Temp	0	Ź	12	Ź	5	o ST		4	e Z		/											
	Clent		È	» 3	00	5	9	ywi ywi	~~~~	q	Ä		<u> </u>	S	80	<u></u>	2	Z	7	23	¥	Ŋ	92	R	8

Tetra Tech, Inc. Ecological Testing Facility

Data Checked and Approved 102

ED_004888_00000097-00373

							00000 AV	0.0000																
Average Root Length (mm)			*				^			***************************************		^		-			Canada Ca					0		
Root length (mm)	ರ ೨									5										2				
Average Shoot Length (mm)	1111 1000000000000000000000000000000000	g	2		***************************************		<u> </u>										, designation of the state of t			***************************************		^	***************************************	
Shoot length (mm)	80				*					Ċ										S				
Seed	long	~ (n 4	ហ	Soool.	7	m	4	2	good	2	m	4	ហ	q-v4	7	m	a	វេ	good	7	m	ರ	ഗ
g d		<	⊄				æ		***************************************			U					0	·······································			***************************************	w		

Data Checked and Approved

Page of 2

START Date/Time (MMDDYYYY HH:MM):

3

Client/Project:

FINISH Date/Time (MMDDYYYY HH.MM):

Ser - 295-02 Test Substance:

	Numberof	N:mbarof Caste	Darrant	Total Day	adoun Dr.
80	Seeds Planted	Germinated	Germination	Weight (mg)	Weight (mg)
4	4	*	000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2000
සා	V	-y-00*	۵	r t	1 + L
U	V	M	9	m + =	
۵	V	٨	\$	7	5-22
ш	Ų	4	ç	447 26	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

in the same are with	ä	à C
	0	2
ing Ha	ص اده	o,
Light int. (μ mol m 2 s 3)	ä; E	<i>*</i> =
WHC (%)	Ċ	

	Temp	Relative Humidity	Pressure		Z nn Z	er Germir	ated bated		: : :		ĥ
2 2 2	<u></u>	S	00	4	80	U	۵	LLI	s S	(A) 000 000 000 000 000 000 000 000	2
	Z	8	***************************************	٥	0	٥	0	٥			
	200	S C	2,	0	0	0	0	0			
~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	70	3.5%	0	0	0	0	0 0	***************************************	\$	3
~	***************************************	ġ.	29.2	0	0	d	d	0			200
e-t-	2.7.2	30.0	2 0 0	þ	4	d	4	d			7
	6.4 6.4 6.4		Ø 8₹	.aantota.co.	0	A00000	0	Was .			30
	4	Ş	ŽŽ	4	********	********	0				È
·····		Ŕ	K	W	········	***************************************	0				Š

Ecological Testing Facility Tetra Tech, Inc

Data Checked and Approved NA

Page 2 of 3

2014

FINISH Date/Time (MMDDYYYY HH:MM): Test Substance: 81/61/71 START Date/Time (MMDDYYYY HH:MM): NAMES NATION 200 Client/Project:

	<u></u>	3	3	Š	33%	300	8	<u>3</u>	25													
30 0 0 0 0		4	2	Z	ij	Z	Z	Z	8													
4 6													200000								Ç	
	L.J	ナ	ブ	"	3-	5		5	. >					***************************************								
ated	۵	٥	O	*******	0	64,	d	Q	N									<u> </u>				
Number Germinated	U	000000	4	4	W	J.,		(^	K				***************************************									
%aun	ස	90000	000604	******	`******	.000*	***********	*******														
	Þ	M	ァ	7		27	7	7	J													
Pressure	as H	r K	Ş	Î	1.1. 12. 2	(d)	7d 2-	J Ž	Y,	,												
Relative Humidity	8	3,54	3		36.0	0,0%	9.g.	2,00	Ŷ													
	2	ĭ	5	S	7,32	Q Z ji	2	Ž	Ü													Q. 691. 681
Č	<u>~</u>	80	9	2	e4	7	m	Ä	M	9	S	80	2	ನ	Z	Q	2	7	Ŋ	æ	2	8

Ecological Testing Facility Tetra Tech, Inc

Average Root Length (mm)			80.15				•	, s					7 - P			***************************************		<u>ሳ</u>		American Control of the Control of t		***************************************	, , , ,	
Root length (mm)		9		33				, Mangaran (1900)	**************************************		32				///	SC	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			\$\frac{\beta}{\chi}	2,3		
Average Shoot Length (mm)			ابر من ش															l o o					<i>?</i> `	
Shoot length (mm)	03500					S	· · · · · · · · · · · · · · · · · · ·	**************************************		, accordance de la companya de la co		2	Š			M	3	1	```	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	2	ろご	
Seed						kooj	7	m	7	w	~	2	m	*	m	hood	7	m	47	ın	şeed	7	m	
2								60				••••••••	U	i				<u>a</u>					لفا	

Page of O

START Date/Time (MMDDYYYY HH;MM):

<u>ま</u>な

FINISH Date/Time (MMDDYYYY HH:MM):

Client/Project:

NAMED AND MINE

Sal-Ald Test Substance:

8

⋖ മ ۵

nnnnnnn	nanananan	ă.	<u></u>	3		
Mean Dry	Weight (mg)	ر ا ا	4 7 7	9,000	5.68	3,0
ber of Seeds Percent Total Dry Mean Dry	Weight (mg)	S F	0	1	S F	50
Percent	Germination	0 1	4	0	0	٥
Number of Seeds	Seeds Planted Germinated	V	7	0	Ŋ	20
Number of	Seeds Planted	V	W	V	J	V

***************************************	***************************************	Sammer
a constant	ä	Šě
	٥	D W
is) Ha	(ტ ბი	r V
Light Int. (umol m² s²)	ž	Ş
WHC (%)	J.	

Č	Temp	Relative Humidity	Pressure		Z	er Germin	nated		***	\$ \$ \$ \$ \$ \$ \$	
ŝ	2	S	(1) (1) (2)	«	₩.	U	۵	3	222	2	2
0	75	N	papero	: :	0	0	0	: :			Ē
quej		2	Ž,		0		0			Š	Z
~	Ź	2	4. 2.		о Ф	۵	O				9
m	7.4.7	0 8 4	6. 6.	٥		a	0	0		ì	0
4	23.2	30.0	6		9	0					유 ~
Ŋ	Š	0,	30	0	0	0	~			Ş	S S
ယ	Ź	2	6			0	1				8
~	Ş	3	C Z		2000	0	< ₹				ŝ

Ecological Testing Facility Tetra Tech, Inc

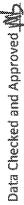
ED_004888_00000097-00378

Data Checked and Approved

1/4/2048

Page 2of ≤

STA	Y Date/Time (START Date/Time (MMDDYYYY HH:MM): Bjtd ilk		ă Z Z	FINISH Date/Time (MMDDYYYY HH:MM):	MN MDDY	Ž H Ž	<u>:</u>			
Clean	Client/Project: 세요년			Test Subs	Test Substance: スカートレイト	7 3 4			***************************************		
	GES	Relative Humidity	Dysckii ir		Mim	r Germin	ate a				
â	· C	3		<	æ	С ()	_	u	Zotes S	2 0 2	 E
∞	Ž	o ġ	Ž		4	٥	7	0		S	88
a	Ź	~	ž		d	٥	ત	٥		I	3
2	Ź	0.6	æ Ž	***************************************	4	0	4	*********		Z	2
9ml	å	w.	ř	. ~~~	< □	0	<δ	N.		T.	3
S	% 0	~~~~	d 5%	******	C,	0	r3	V		(E)	<u> </u>
m	2	27,0	7,52	woon	Ç.	0	O			4	<u>\</u>
Ħ	Ź.	27	, K	******	C	C	~{	****		Ş	75
n		a A	7.7	~~~	ፈ	0	~	******		3	<u> </u>
9											
2											
90											
ņ							•				
22											
7											
22					/						
R						/					
X							/	j			


Ecological Testing Facility Tetra Tech, Inc.

Data Checked and Approved 🖎

00 CN ~

Ф М N

	Seed	Shoot length (mm)	Average Shoot Length (mm)	Root length (mm)	Average Root Length (mm)
	gard,	5			
·i	7	>*****		7900	
<<	m	ŧ	0	900	2
	4	ı			
	រហ	***		aan	
	ç\$			23	
	7	**		o C	
m)	m	u.	b C	vyan	4- ئە
	q	-		\$	
	'n			ga	
	4-mg	·sass			
······i	7	*		***	
U	m	مون	l	w ^{ije}	
	. 4	*		***	
	ហ	ì		ww	
	Sec.	a Tu		S	
	7	ر ر س		04	
۵	m	4	l v	**	
·	4	*	,·		
	'n			s see	
å	\$cool	2		\$\frac{1}{2}	
	7	ŧ		*900	
w	m	iae	\	****	**
	**	*		Sale	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	'n	R			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Weight Data for C. pepo Root and Shoot Growth

Control Test ID: 71604045			Start Date (MMDD	Start Date (MMDDYYY): 12/4/18		End Date (MMDDYYY)	વે
Drying Temp: 100 10	3.40		Drying Time (HH:)	M): SANT.		Weighing Date (MMODY	ODYN): WW. 6
Analyst: 1805	***************************************	***************************************	Client: NAYAGO NATION	NO TANK			**
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ω	¥-8	······································	2/(4-8)	
Ç S H	0 2 2 0 0	A tries	Dry Weight of foil	Total Dry Weight	žimber of	Mean Dry Weight	y X X X X
))			and organisms (mg)	of organisms (mg)	organisms	of organisms (mg)	
Ž	grav.	2,552	9495.7	24.5	4	50.3	
Š	C	22	3,52,6	(5) (5)	4	ر م د م	
Ž	က	7926	. .	27.9	ŧ	5 6	
,	4	2205.6	3,326.1		7	10.25	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	£	27.22.2	0,0%	7.3%	سممد	36.2	
<u>.</u>	7	7 9 7	33.43.2	5 5 9	4	5 5	
} **	2	2577,0	0.830	- 35	4	4	
Ş	ಣ	% 0 × 0 × 0	2458.2	lo V	4		0000000
``````````````````````````````````````	*	24.05	5 03 t.C		7	رم دی	
1000000000	ഗ	いとかれて	9 1 CTC	***		4	***************************************
	diam.	20.02	9357	9	7	60	
5-8-16/	7	75.5%	t"∂€,7%	8.2		8 2	
0	ಣ	2332.9	85%3	0.2	٥		
Ž	4	238.9	23845		O	0	
	2	234.9	4387.0	7	0	0	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	400	72.5%	25,41.50		7	. S	
5 2 2	7	2205.8	3.7 <b>3</b> % &	2.4		42	
C	m	236.6	006 X 3	4	٥	0	
> 5 * -	4.	7.5558	9.3.50	G O	0	0	
	ഗ	2000 2000 2000 2000	)	£.	0	٥	
5-4-15		3426,8	T.	9	owo	-	
	7	23 6,6	*	2   8	2	6 0	
¥3	e o	8,23,5	2%0.2	4	0	G	
, , , ,	4	97075	3	% %	2	4	
	w	\$ % & &	2. V. V.	0	.2000	ф (2)	
i di	<					anggarang	
 20 20 20 20 20 20 20 20 20 20 20 20 20	۵						



End Date (MMDDYYY): 1.1/1.9/18	Weighing Date (MMDDYYY): 4/44/12	**************************************	3/1/4 G/
Start Date (MMDDYYY): 12/4/(8			** G
<u> </u>	Dying Temp; , ft t	4	

Weight Data for C. pepo Root and Shoot Growth

Remarks						0000000		00000000																			
(B-A)/C Mean Dry Weight of organisms		2 2	3 1	25.	7.2.	8.	******	2.85	, ,	4000	79.4	90000	- 52	7 2	44000	arc.	····		· aux	2000	400		æ	***	φ.		•••••
C Number of organisms		2	0	7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	gammid		<u> </u>		0			0	0	٥	0	٥	0	0	0	0	0	0		
P.A Total Dry Weight of organisms (mg)	2.6	2-3	200000000000000000000000000000000000000	20.5	1.5.1	8		5 7 8	3	8	4.9.4	2.6	7.52	7 2 2	4,3	9		4.0		3, 3	O.	4,0	2	0	ф (C)		
B Dry Weight of foil and organisms (ma)	3505.	5415.3	3.6.25	3510.3	9350.7	2703.4	1364,2	7549.7	33gH.*	3353, 3	35:0.6	2604.9	3504.	5.55°C	24 <b>6</b> 1.3	<b>4</b>	7643.9	3417; \$	9, 3 k > c	9.50	3246.5	5, 8, 2 <b>6</b>	2477, A		2000 2		
Meight of boat (mg)	744 i	2345.7	57.5%	- 69.7K	225.5	786	21012	2560.3	À376.5	7363.4	7,68,7	2,407.3	2437.0	43.Ex	2US7:6	3.5	2691.3	Z	2,595,8	2566.3	s Z	, ,	24 <i>46,</i> 2		7.078		
Replicate	ų.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	c)	4	w	· Vana	2	m	4,	ಸ	<i>\$</i>	2	m		ഗ			က		ಬ	,	2	ಣ	4	2	٨	Œ
Test ID		T F	Ţ	 Ž	aa	\$ 38 T	* - - - - - - -		É	š	\$ 30° %	\$	C	250%	<b>3</b>	1000	S S S S		ŝ				Ċ	68		200	2000

Tetra Tech, Inc. Ecological Testing Facility

	in cook		Drying Time (HH:MM): 24 hr.	MM) 3 4 Mg.		Weigning Date (MINIDUTYT): 6/20/6	
Analyst: MND		***************************************	Client: NAVATO NATION	NATION			
Test	Replicate	A Weight of boat (mg)	Dry Weight of foil and organisms (mo)	B-A Total Dry Weight of organisms (mo)	C Number of organisms	Mean Dry Weight of organisms (mo)	Remarks
		2,45,5	5,0550	5.3	<i>Q</i>	<b>*************************************</b>	
i i i			o Enc	V.	7	\(\frac{1}{2}\)	
	m	<b>4</b>	5596	C	m	23.567	
<u> </u>	#	7,029,8	2,65,6	7.9.1	Ŋ	5	
i	S	2831.6	7433.4	2, 2	0	•	
:	ken	3542.0	3547.4	4	٥		
	7	و. الالا	gH 38.7	8	2	4.3	
	r	×224	67.22	31.9	m	63	
- X505	4	7385	347.8	-	r	20, 4-3	
	រោ	364G	76594		0	800	
S.	<b>\$</b>	25	360,4	97	÷	و	
ラミニラ	7	7335	0.9440	23.3	5	95.9	
······································	m	2 2 2 2 2 2	330.6	26	V	7.7.7	
	4	Shanz	3514,4	C (C)	4		
	u)	7,9]}	D4 (.4.:	47.6	Gr.	σ.	
·	A.coo	8,23,8	\$7.7.%	7	4	0	
	7	5.00	\$ 649 C	25.0	U	30,08	
	ന	24470	0.68.3	121.7	ľ	24.34	
Z S	Ą	<u> </u>	-S	146.6	4	36.69	
	ເກ	<u>ج</u> چې	3467.3	134.6	ð	33.65	
70° ty	- France	3°20'8	> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5 2	~~	56.	
	2	i S	C. E35¢		÷	575.0	
Č.	n		)~ <b>%</b>	40.8	0	2	
	4	ج م م	5,2450	27.8	đ	7 2	
	ın	- -	\$5.00 m	32	4	æ	
2,724	<						
<u>0</u>	С						



for C. pepo Root and Shoot G
<u>a</u>
ğ
od ed
Ö
Ş
Data
Ë

Analyst: Mals  Test ID Replicate Weight of by (mg)  Suil-157-01 1 3701.0  Suil-200-03 2 25548 5 3701.0  Suil-200-03 2 25584 5 2475.0  Suil-200-03 2 25584 5 2755.0  Suil-200-03 1 27571.5  Suil-205-04 2 27571.5  Suil-205-04 2 25585.1  Suil-205-04 2 25585.1  Suil-205-04 2 25585.1	A B B-A B-A B-A B-A B-A B-A B-A B-A B-A	0 NAT LOW B-A Total Dry Weight of organisms 57 4 96.3 57.5 57.5 1.9 1.9 1.5 2.3.3	Number of organisms 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean Dry Weight Rema of organisms (mg) 2 8. 7 2 8. 7 2 4 9 5 4 9 4 9 4 9 4 9 4 9 4 9 4 9 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	Remarks
Replicate V 3 3 4 4 4 4 4 4 4 4 4 5 5 6 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	i i i i i i i i i i i i i i i i i i i	8-A Total Dry Weight of organisms 57 4 96 3 57 5 57 5 1 9 1 9 1 9 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 7	Number of organisms 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(B-A)/C Mean Dry Weight of organisms (mg) 2 8. 7 2 6. 7 2 6. 7 4 0 67 4 0 67	Remarks
Replicate W 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	to I I I I I I I I I I I I I I I I I I I	Total Dry Weight of Organisms (mg) 57 2 2 57 5 2 2 5 2 5 2 5 5 5 5 5 5 5 5	Number of organisms 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean Dry Weight of organisms (mg)  2.8.7  2.4.0.7  4.0.67  4.0.67	Remarks
Replicate	ig	of organisms (md) (md) 57.7.4 9 6.3 4.9 4.9 1.6 2.2 2.2 2.3 3.3	Number of organisms 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	of organisms (mg) 2.8.7 2.6.75 2.6.75 4.0.67 4.0.67	Kemarks
2 3 3 3 4 4 4 4 4 4 5 7 7 7 8 3 8 3 8 3 8 7 7 7 7 7 8 8 8 8 8			17 4 4 4 4 1 M 4 W L		
2 4 3 2 4 3 2 2 2 2 3 3 3 3 3 3 3 3 3 3			4 4 4 - 4 4 6 6		
8 4 9 7 7 8 4 9 7 7 8 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 9 9 9		57 5 107.1 1.8 12.2 16	K 4 4 - K 4 K L		
4 2 3 3 4 4 4 4 4 7 3 3 3 3 3 3 3 3 3 3 3 3		1.6 1.8 4.9 12.2 16 16	44-64-66	2.6.5 2.0.5 4.9.67 4.0.67	
3 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2.2.2.2.2.2.2.3.3	4 - 2 4 6 2	2.0.5 4.0.67 4.0.67	
- C		W 1	-146	4 0 67	
2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3			N 4 W L	4 70 1 -1	
8 4 2 1 2 8 4 2 1 2 8 6 7 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9			4 6 6	20 -	
4			~ r	-	
2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3		5	۲		odot
1 2 5 1 2 5 1 2 5 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7		- C	3	588	200000
2 6 4 3 - 2 6 - 3 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		2.7.		27.1	
3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Sis	673	S	
40-2645		4	Ą	7	
3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	2369,7   5483.2	r L	e~3:	2.6	
- C1 C2 C4 C4 C7 C7 C7			M	18 263	
3 2 4 3 2 3 3		. 5 4	*	1	
2 4 2 - 2 6		~			
7 2 7 2		235	m	% 6 7	
3 2 - 3			~	6,2	
7 2 6	2442.9 S407.0	4	4	6.025	
3 2		7	4	6 92	
ro		5.15		47,5	
200000000000000000000000000000000000000	2011 0 1 20 P	8 36	~	20,263	
4	2587.2	33.9	2	<u>ک</u> د ۵ک	
2	24824 - <b>188</b> 24	423.16	\$	50.73	
Bisnke					
œ	recensed Artic				



Drying Temp. 10,	Drying Temp: 10,0 °C	***************************************		State Cate (With DOT 1 1) 1 1 2 7 1 7 1 1 1 1 Drying Time (HH:MM) 次子(M)		Weighing Date (MMDDYYY):12/49//6	
	***************************************	***************************************	Client: NAVATO NATION				y }
	Replicate	Weight of boat	B Dry Weight of foil and organisms	B-A Total Dry Weight of organisms	Number of organisms	(B-A)/C Mean Dry Weight of organisms	Remarks
		) D	(mg)	(mg)		(BB)	
	too		0°46.C	9.9	300 VO	3.	
? £	N	9 2 2 4 3 6	35.4%.8	ĸ.	-sources	ام ک	
Š	m	<del>ن</del> ئارىخ	27543	4		4	
2	4	77.26.0	27.57.		C	2000	
	S	2557.9	356.8.H	14.5		<b>V</b>	
*	· Perce	\$\$ \$\frac{2}{5}\$	3455.5	9			
	N	7703.7	3736.1	22.4	, 00000	22.4	
Ć	m	2456.0	9414°	74		<b>M</b>	
	4	260	7. CO.3.	80	0		
	က	8. 8. 8. 8.	230.8			37	
	-foo-						
	N						
	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	/						
	រោ		***************************************				
	<i>Y</i>						
	7		/	1			
	ಣ						
	43	<b>30000000</b>					
	တ					/	
						_	
	\ \ -						
	43						
	77						Ž
	ഗ						Ž Ž
Q C C	<						
500			^000			000	

Test #: T t a 4 b 4 0	Laboratory ID:	Tetra Tech	Sediment Load Date/Time:	ЩЩ	<u> </u>	100000000000000000000000000000000000000
**************************************		noithea	As Organism Load Date/Time:	.//d	lı&	
Sample ID: 0.2.5'ANT WANK 07	Client/Project:		**			деоооооооооооооо
Species: H. azteca	Sediment Volume (mL):	100	Test End Date/Time:	إلكلالة	10	::::::::::::::::::::::::::::::::::::::
0		a week	Corresponding Control Tes	"H	CNYM	
Organism Batch #: Olo	Water Volume (mL):	175	~~0000000000000000000000000000000000000		•	000000000000000000000000000000000000000
Organism Age: 7 davs					Day	:
Organism Age: 7 days			Parameters	0	28	i
g-11/200000000000000000000000000000000000	rancos Circle	Ranno Si Survival	NH. (me/L)	12.06	AJAA	I

CUVVVVQQQQQQQQQQQQQQ	000000000000000000000000000000000000000	000000000000000000000000000000000000000				Final Mean % Survival
				Analγst	Time	# Surviving X 100
1	2	3	4			# Exposed
10	10	10	10	NV.	30000	n
9	9	名	ιO	W	Named	14
	1 10	1 2 10 10	Replicate 3  1 2 3  10 10 10	Replicate 3 4 4	Replicate Analyst  1 2 3 4  10 10 10 10 10	1 2 3 4 10 10 10 10 10 10 10 10 10 10 10 10 10

300000000		Эау
Parameters	0	28
NH ₃ (mg/L)	0.06	N/A
Alk (mg/L as CaCO ₃ )	1/29	149
Hard (mg/L as CaCO ₃ )	ાંખૂક	136
Anaiyst	Tr	I.r
Time	60	1,50

		L		~g~~~	.dooooooooooooo				000000000000000000000000000000000000000			×	
Day	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Renew	al Water E	latch ID & Tim			YCT#	pH (su)	Cond. (µS)	Temp (°C)	DO (mg/L)	Analyst	Time
nay	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time AJA 10.7K	NA NA	(50)				Wh	C-48cccqcco.
-1	\$0000000000000000000000000000000000000	**************************************		······································		8 8 8 1			444	\$3,7	7.7/	I.	1640
0	877	12	0745		W	licio_	<u> </u>	8.0	44.7	233	#, 5°°		0895
1	<u> </u>	MA	<i>0615</i>	872	1400	1500	<b>\$45</b>			33.4	8.8	BH	1/1/10
2	87>	<u>  B/4/</u>	<b> </b> 336			-34	845	2,4			90000000000000000000000000000000000000		\$44000.00000000000000000000000000000000
3	<i>የ</i> ጓን	<u>Brill</u>	0745			<u> </u>				224	10.0		13(1
4	ζ <del>33</del>	NP	09/00	<u> </u>	<i>I</i>	11545	945	8-1		<u> </u>	2.3	<u> </u>	123]
5	<b>γ</b> 44	MS	090	<u> 87.7</u>	1	1520	845			<u> </u>	3.2	C 0	1425
6	<b>Č</b> 77	VW2	Way	877		1500	845	,		<u> 24.5</u>	B.6	<u> </u>	0125
7	9,71	TK	0900	8,77	<u> </u>	1400	845	8.0	432	22.3	2.3	LAS.	0738
8	~82	A S	n 9 0 Q	887		1515	845			22.2	Q 3	LAS-	<u> </u>
9	<b>68</b> 2	184	1930		-6	-D#	<u> </u>	8/0		39.1	8.6	<i>VH</i> -	)/oo
10	682	Taj	0015			AJ	645			22.2	لِدِياً ا	LAC	1018
11	9,82	As	1070	449	M	lugo	SWS	8.		22.1	6.5	LB#	<u>   [] [</u>
12	882	TA:S	0850	882	ΛS	14 50	647			22.0	1.1	Las	11000
13	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I	14 20	<b>64</b> 2	W	1540	<i>જુપ</i> લ			21.4	8.0	LII.	
14	483	154	1130			17	847	8.4	Hoi	21.7	7.4	I.	/2 %
15	443	1(1)	1600			100	844			22.9	8.3		/5/5
16	48I	T.	1140	**************************************	***		840	8.4		265	9.0	\$.7m	1375
17	ÑÃ	N.J.	18 10	\$0000000-0000-0000		+014	18415			33.(	(1)	<u>B</u>	] N Z
,	882	##	0850	882	T A-5	1430	×\$000000000000000000000000000000000000	8.		32.0	7.7		11:3
	<u>                                     </u>	A.S	0830	682	TA 6	1445				22.0	8.6	LAS.	1100
	982	ζ <u>β</u>	0915		TA:	1600				21.7	9.6	1814	1130
	<u> </u>	As	0845	884	1/10	16	1847	8.3	<b>3</b> 1 4	22.0	6.1	<u>l as</u>	1020
		A5	0845	284	10	1/540	~g~distinance			245	7.7	LAS_	1050
	3 <u>4</u>	Bir	Tilos	***************************************	***************************************	170/	×26000000000000000000000000000000000000	, <i>(</i> , )		12,4	7.8	164_	1300
	<u></u>	TW	11425	**************************************		17W	1844			223	7.6		1437
	, , , , , , , , , , , , , , , , , , ,	TÑ.	Tring COP(n)	STY	Nb	TISSO	00-200000000000000000000000000000000000	7.9		ልኢንተ			1052
	à		1430	884	TAS	1500				20.2	24	As	0.200
		11.00	0 9 3 0	<u> </u>	Tais	Ti <u>sio</u>	TYTT			22.8	1 .	AJ	1050
				1 884	TWK	IIV	851	8.0	418	727	7 3	17.	452
	à	hermonish alasmonis	··· Andrick debie	<u></u>				k	<del>(</del>	*			

urements will be taken upon the 1st renewal of the day on the "out water. QC:_

ac:<u>Mz</u>

วการ

Test #: T + 0 4 0 4 0

Sample ID: 02 SANGWANK 07

Client/Project: Anaestia w/5/**A6

Species: H. azteca Sediment Volume (mt.): 100

Organism Batch #: Q 6

Water Volume (mt.): 175

Organism Load Date/Time: 1/3/18

Test End Date/Time: 12/20/10

Organism Age: 7 days

Day				Replic	ate			
	5	6	7	8	9	10	11	12
0	10	10	10	10	10	10	10	10
42	7	7	90	9	12	9	9	8

Final Mean % Survival	
# Surviving	24 4 62 62
# Exposed	X 100
88,75	

Corresponding Control Test #:

Day		Renewal	Water Ba	tch ID & Time			YCT #	рН	Cond. (µS)	Temp	DO	Analyst	Time
Duly	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	1017	(su)	cona, por	(°C)	(mg/L)	221201720	*******
29	886	<u>A-S</u>	0845	884	J,	1645	<b>8</b> 43			<u> 229</u>	7	W	1205
30	886	<u> As</u>	1210				<u> 853</u>	6.7		12.9	7.5	<u> </u>	1245
31	884	NN.	710	4-04			***************************************			23.0	7.6	W	1100
32	9ରମ	M	ያያ	986	A-s	1530	853	1.0		<u> 223</u>	8.1	AS	1145
33	486	<u> </u>	0815	886	LAS.	1530	834			22.3	78	$\omega$	୍ଷ ବ୍ୟୁ
34	886	AS	1058	896	A.s.	1530	254			77.8	2.6	<u> 1814 -</u>	<u>1130</u>
35	867	M	ON	<i>የ</i> ኔን	M	/Sc0	85Y	7.6	340	23.1	9,2	<u> ሉ</u> ડ	1030
36	१४७	$\mathcal{L}_{f}$	0950	ў <u>г</u> , ¬	As	1530	v54			22.8	7.6		Q9 52
37	563	164	1200	***************************************		<b></b> \$H	854	2.1		23-1	6.6	Bサー	1,00
38	8(/>	18#	[[년 8]	Çomonimo monte de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo del comonimo del comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo del comonimo de la comonimo de la comonimo del comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo de la comonimo	***************************************	-64	854			29-8	ン. ப	₿#	145
39	<u> </u>	Īſ	0930	ଟନ୍ଦ	(Q)			7.0		22,9	6.7	Ir	1040
40	887		0915	ଓଟମ	AS	1515	884			23.5	6.8	BH	9110
41	887	18H	0 & QC	(()	844	i\$30	<b>734</b>			ઢો. ક	(,0	BH	0825
42	Annonyoganana og da og og og og og og og og og og og og og					***************************************		7.4	313	823	75	(W)	1540
,			000000000000000000000000000000000000000	***************************************		***************************************	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			gaaaaaaaaaaaaaaaa	200000000000000000000000000000000000000	***************************************	
		Offen	rina nar	Renlicate			-131sd				Sur	/ival	

	S	Sex Ratio per Replicate and # of Young/Female									
Day	5 6 7 8 9 10 11										
Males	1	3	5	7	7	5	4	5			
Females	6	H	5	2	5	Ч	5	3			
Young/ Female	<i>ს</i> . Դ	1Q3	7.0	8.0	L.Y	7.0	H.6	1.3			
L.FEIIIdie					L	L		8. 2.			

	Sur	/ival
Rep	Day 28	Day 35
5	7	7-
6	7	7
7	10	lo
8	1/	ll.
9	12	12
10	all pa	9
11	q	9
12	Z	7

Test #: T & O & O & I	Laboratory ID: Tetra Tech	Scdiment Load Date/Time: W 7119
	Nevejo Netion	
Sample ID: 07 SANTWANE 06	Client/Project: Angeotic 11/5/14 A&	Organism Load Date/Time: 11918
Species: H. azteca	Sediment Volume (mt.): 100	Test End Date/Time: 12/20/18
Organism Batch #: 06	Water Volume (mL): 175	Corresponding Control Test #: 17-04050
Species: H. azteca  Organism Batch #: 06	Sediment Volume (ml.): 100  Water Volume (ml.): 175	Test End Date/Time: 12/20/18  Corresponding Control Test #: 17-04050

***************************************	***************************************			
		***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Final Mean
กลง	Replicate	analvet	Time	# Surviving

7 days

Organism Age:

2000	Day		Re	olicate		Analyst	Time	Final Mean % Survival # Surviving
-		1	2	3	4			# Exposed X 100
	0	10 10		10	10	AVI>	Mouson	025
	28	٩	Q	9	9 (		<b>ن</b> س	04.7
		<u></u>	L	L	L2	LXX	L	

	Day				
Parameters	0	28			
NH, (mg/L)	0.24	NN			
Alk (mg/Las CaCO ₃ )	146	38			
Hard (mg/L as CaCO ₃ )	138	{ 3,2			
Analyst "/#s	Jún Ir	T _r			
Time	1615	1150			

T neu		Renew	al Water i	Batch ID & Tim	(3) (X) (X)	20000000000000000000000000000000000000	YCT #	рΗ	Cond. (µ5)	Temp	DO	Anaiyst	Time
Day	Renewal 1	Analyst	Time	Renewal 2	Analyk ANA	Time	M0000000000000000000000000000000000000	{su}	(,0)	(°C)	(mg/L)	. 84 /	
-1	>-000000000000000000000000000000000000	***************************************	00000000000000000000000000000000000000	***************************************	M	<u> </u>	NA			***************************************	ing.	妣	
0	877	2	0945			\$0000000000000000000000000000000000000	M	8.0	612	Vs.7	7.1	<u>II</u>	1646
1	<i>ያን</i> ት	dki	0600	879-	1411	100	ßør_			23.3	<u> 4:5                                   </u>	Ţ	0495
2	703087)	1	1030	8		-WH-		2.5		23.4	810	BIL	1400
3	877	<i>H</i>	0745	-3-6-00-000000-00-00-0000		W	SYN			23.6	9.9	<u> </u>	/5//
4	977		୦୩୯	877	W	1545	845	8. j		23.b	8.7	<u>A5</u>	1237
5	897	NDS	<i>0</i> 900	877	2	1520	845			239	8.5	ca	1425
6	የንት	NS)	MW	877	2	1500	845			<u> 24. r</u>	8.6	C.S.	0410
7	977	TR	0900	677	A s	1400	845	7.6	502	17.3	LOLL		0938
ä	882	AS	0836	852	(A)	1515	845			22.2	8.0	As	1200
9	687	B#	b30	~~		D/H	845	2/2		3341	8.5	<i>DH</i>	1100
10	882	As	0915	***************************************		As_	545			22.2	g.i	<u> </u>	/018
11	882	AS	1030	883	(V)	***********	845	8,0		2.2.	6.3	1/4	1250
12	882	A S	0850	002	MIS	1450	845			22.0	7.2	Из	1000
13	287	Tr	0440	881	M	เรียง	৫৸৸			21,4	80	T-,-	h 15
14	833	Tr.	// S //	Vannus (1997)		r g	847	3.0	458	21.7	7.1	125	1230
15	887		lugo			<b>1</b>	844			22.0	7.6	$\omega$	/ <b>5</b> 68°
16	<b>€</b> €₹3	Dr	1140		<b></b>	dedouisessessessessessessessessessessessesses	847	۵.۵		264	3.4	Special Surgicus.	1375
17	667	BH	MA	¹ /100000000000000000000000000000000000	**************************************	HILL	rus			22/05	8.1	BH-	/130
18	8 ( ) 1 p		عهلايلا	**************************************	***************************************		747	7,9		22 0	7.5	Q	1107
19	882911			882	AS	1430	647			227	N - 6	er S	1100
20	9:82	44.	0915	982	43	1445	847			21.7	17.2	<u>B4-</u>	1/14
21	884	A S	0 8 4 S	<b>8</b> 17		TW.	PW	Q.2	366	22.0	6.5	AS	020
22	894	## C	0845	887	(W)	1540	844			24.5	7.6	Αs	1050
23	l XXV	154	1140	vatroscovania-a-vascovania-vascov-vascov		104	VU/>	8,0		ZHIG	5/5	BW	1255
24	884	(0)	425	A0 ₀₀₀		1700	849			228	7.6	782	ไเหริน
25	904	M	19W	884	UV/S	1210	849	7.5		6,00	70	(20)	1052
26	584	T TO THE	WW	984_	As	1500	430000000000000000000000000000000000000			2a.8	8.3	Αs	0900
27	964	ATS	0910	884	TWĎ	lisw	851			228	7.6	AT	1050
28	**************************************		-WAS	<b>9</b> 84	TiÖ)	1000	837	7,4	Hos	7.2.7	*******************************	177	11500
	<u></u>	<u></u>	3 8-8	¥	1 2 7/	1.1.	A	4		veden war	å	<u></u>	

Sediment Load Date/Time: Tetra Tech Laboratory ID: Test #: T + 0 4 0 4 1 Vajo Nation Anecostic 11/2/18 AS Organism Load Date/Time: Client/Project: Sample ID: 02 SAN TUANEOS Test End Date/Time: 100 Sediment Volume (mL): Species: H. azteca Corresponding Control Test #: 1-0460 016 Water Volume (mL): 175 Organism Batch #: Organism Age: 7 days Final Mean % Survival Replicate # Surviving Dav X 100 # Exposed 5 6 7 8 9 10 11 12 10 10 10 10 10 10 10 10 0 82.S -65 8 7 9 0 8 10 2/20/18 15 Temp 00 Renewal Water Batch ID & Time YCT # Cond. (uS) Analyst Time (mg/L) (°C) (su) Renewal 1 Analyst Time Renewal 2 Analyst Time 70 (17) 229 486 1205 29 ଅଟର 🎖 0845 645 863 AS 30 853 7 2 22 O 245 686 A-5 1210 1104 23.0 31 886 MI 105 24.) 1145 32 886 W/> OŶW 986 <u>853</u> ~1. 530 223 7.3 0835 33 (W) 886 0812 886 9,54 80 34 886 AS 1057 886 854 **\$** 887 ND 344 874 7.5 8.8 A S 1030 MN 20.8 7,7 040 **T**V7 154 36 0880 887 /d Oss 854123 88 ILO 37 RH L/4 S &SL (K) 1140 38 T. 7.3 224 887 W 1530 854 5.9 lomo 39 0430 <u>0920</u> 5.9 591S 854 515 40 ΒH 0825 BIL 0800 8Sr 41 1540 7.4 42 310 Survival Offspring per Replicate Day 28 Day 35 Rep 6 7 12 Day 11 Ø 0 0 0 35 0 0 12/70/10/5 14 18/43/18/61 Total 8 10 Sex Ratio per Replicate and # of Young/Female 10 S 6 11 12 Day 4 2... 5 Males 2. 5 11 12 3 Females Young/ 1.8 4.0 .. J.0 1.2 6.0 **Female** 

ac:_\<u>\\\\\\\\\</u>

Sediment Load Date Time: 4/7/16 Tex#: T't 04042 Laboratory ID: Tetra Tech Nevajo Nation Organism Load Date/Time: Client/Project: Sample ID: 10 SAN TUANE 38 Test End Date/Time: Species: H. azteca Sediment Volume (mL): Corresponding Control Test #: TEUYUSO 175 Organism Batch #: 0162 Water Volume (mL): Day Organism Age: ٥ **Parameters** 28 Final Mean % Survival NH₃ (mg/L) 0.04 NM Replicate Alk (mg/L as CaCO₃) 126 Day Analyst Time # Surviving 46 X 100 Ą # Exposed Hard (mg/L as CaCO₃) 114 140 2 3 1 0 10 10 10 10 Anaiyst I, W T, 70 1615 28 8 ď 0930 Time

Dav		Renev	/al Water	Batch ID & Tim	e		YCT#	pН	Cond. (μS)	Temp	DO	Analyst	Time
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	1618	(su)	come (ba)	(°C)	(mg/L)		
-1						***************************************	WA.					-144	<u>KA/0</u>
0	<u> </u>	12	0945	<u> </u>	N	1530	SAL	7.6	нэч	23/	7.3	Ir	(HO
1	<b>\$77</b>	W	0642	873	MA	<u> (5</u> 70	84(			20.9	72.1	Ti-r	0815
2	1 <del>03</del> 5(?)	13/ <del>/</del>	1030	***************************************		<u> β/</u>	845	17/2		) }. O }	200	rBH	[[a
3	877		0745	***************************************		μů	247			338	10.4	<b>Q</b>	1315
4	844	lιψ	M		2	1545	845	7.4		aag	ገ. 8	AS	1237
5	894	NJS	Nω	877	2	1520	845			B()	7.6	CS	1430
6	877	Clo	0160	877	2/	1500	845			23,2	7.4	C 45	445
7	011	JR	0 960	ยา <b>ว</b>	AS	1400	845	7.5	441	13.2	8.0	AS	0938
8	882	A s	0900	ଟଟନ	6	1515	845			23.4	η, 3	MS	1200
9	882	B)4	1030	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(Y+	845	ŭ		43,5	9.	Β₩	1100
10	832	AS	0915	,		Ar I	045			23.5°	6.7	۸۲	10/3
11	8%2	As	1030	887	(W)	16.7	ู่เริ่นร	2.5		23 G	6.7	BH-	<u> </u>
12	Ø % 2.	AS	0050	882	M.S	1450	247		9.4	23.5	٦.١	A-5	1000
13	<b>4</b> 82	Tr.	0120	ଟଃଧ	(A)	1540	%시키-			23.3	455	T	11 15
14	<b>G</b> 87	I)	1130			- Jy	Ø)rr	7.6	351	22,4	7. <	Tr	193c
15	<u> </u>		1600			(D -	<b>3</b> 7474			23. C	ಇ.೮		1520
16	883	15-	1140		***********	17	847	7.6		20,4	8.5	I.	1347~
17	8()	BH	1130		*****************	-15//-	୪५)			23,5	7.9	BH	Misa
18	862	Gr.	0850	082	ሉ \$	14)0	847	<b>%</b> 0		23.3	7-8	(ici)	1115
19	222	As	01/36	882	۸s	14:45	#47			22 m	6. A	As	1100
20	492	AS	212	412	Ars	1600	547			23.9	800	ß#	1135
21	114	As	2045	774	ιχn	<b> 60</b> 0	<b>14</b> 0-	7.8	408	24.2	7.7	AS	1035
22		_as_	<u> </u>	884	Q .	<b>1</b> 540	४५३			22 7	1,9	As.	1022
23	S&U	ß	୦୯୦			B#	\$45	8.0		)4''C	8.0	<u> </u>	/)00
24	884	(W)	1475		****	Ø	84¤			246	7.6	(4)	1428
25	884	1QL	190	894	LX/S	13DO	вчч	7.9		23N	70	<i>(U)</i>	1105
26	884	ЦЙb	()P-30	884	15.5	157)0	649			23,0	8,7	ns.	1910
27	884		0936	<u> 100 u</u>	怭	120%	611			22,6	7.9	A S	1050
28	***************************************		. Alb	884	AN.	Sign	<b>X</b> II	7.6	чрн	20.9	つ、4	377	11572

Laboratory ID: Tetra Tech

Sample ID: 10 SANTUANE 38

Navajo Nation Client/Project: <del>Anarosin</del> (1/5/18 AS

ganism Load Date/Time: 11 18 116

Species: H. azteca

Sediment Volume (mL): 100

Test End Date/Time: 12 20 10

Organism Batch #:

016

Water Volume (mL): 175

Corresponding Control Test #: THOUCO

Organism Age:

7 days

	Day	Replicate										
-	·	5	6	7	8	9	10	11	12			
-	0	10	10	10	10	10	10	10	10			
-	42	6	4	6	2	5	H	Н	5			

Final Mean % Survival	
# Surviving	X 100
# Exposed	ALUU
***************************************	nonnonnonnon (Mot
L/C	
[	
*	

		Renewal	Water Ba	itch ID & Time			YCT#	рН	Cond. (µ5)	Temp	DO	Analyst	Time
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time		(su)		(°C)	(mg/L)	<b></b>	
29	886	A:s	0845	886	J77	1445	<b>8</b> €3				~	<u> </u>	1700
30	9.86	1	1210	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	···········	AS.	853	7.4		22.2	<u> </u>		1245
31	886	NS	1015	90000000000000000000000						<u> 23. °</u>	<u> </u>	<u> </u>	1101
32	886	wh	ØW	486	As	1530	<del>05</del> 3	7.5		22.3	6.2	٦٨٢	1145
33	886	10	0815	886	NS.	1530	854			22 Z	<u> </u>		0935
34	886	Λs	1050	686	A-s	(5 <b>3</b> 0	954			<u> 33-8</u>	2.5	BH	1136
35	887-	WY.	Cura	887	W	ΝW	817	7.5	340	23.1	8.9	A S	1030
36	<i>§</i> ৪০	TŢ	0850	୬୫Դ	As	٤530	854			23.8	<u>6.8</u>	T.	04523
37	887	10/1	1200			$-\beta\mu$	lks4	> 4		<b>*************************************</b>	6.1	danner on the same of the same of	<u>  } Q</u>
38	887	15/-	1140	***************************************		7B/	624			24. S		\$#	1147
39	<b>&amp;</b> 87	Tr.	0130	487	[W	1530	854	7.5		<u> 22.9</u>	7.0	LT.	10.70
40	K87	VA	6415	887	٨s	1515				32/5	5,9		940
41	67	D +	1,600	<b>6</b> (7			(27)			7 7.8	6.8		11/13
42	***************************************		***************************************					7/2	310	027	7.6	<u> </u>	1540

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Offspring per Replicate										
	Day	5	6	7	8	9	10	11	12				
	35	3	0	3	0	10	0	٥	0				
	42	38	ď	Ш	0	0	7	9	15				
-	Total	M	Ο	17	Ö	112	*3	9	14				

Sex Ratio per Replicate and II of Young/Female										
Day	5	6	7,2	8	9	10	11	12		
Males	1	4	2	2 .	4	2	3	2		
Females	5	Ø	Lly.	0	1	2	1	3		
Yaung/	00	20	100	^	1A	1.5	0 ^	Ø .		
Female	0.0	V	7,5	V	10	10)	1.0	).V		

,oouooooo		Sur	vival
Rep		Day 28	Day 35
	5	Ó	6
	6	5	\$
	7	6	6
	8	2	2
	9	5	5
	10	5	5
	11	S	14
	12	6	5

ac: **\/** 

Test #: T t 0 4 0 4 3	Laboratory ID: Tetra Tech	Sediment Load Date/Time: 117/16
Sample ID: 10 HOGBACKC43	Navajo Nation  Client/Project: +normin./c/s.ac	Organism Load Date/Time: 11/8//8
Species: H. azteca	Sediment Volume (mL): 100	Test End Date/Time: 12/20/16
Organism Batch #: 016	Water Volume (mL): 175	Corresponding Control Test #: 17-0400

Organism Age:	7 days
VVV00000000000000000000000000000000000	50000000000000000000000000000000000000

Day		Reş	olicate		Analyst	Time	Final Mean % Survival		
	1	2	3	4			# Exposed		
0	10	10	10	10	M		T Oni		
28	10	9	1	11	rap	yogoogs.	147.3		

	Day					
Parameters	0	28				
NH ₃ (mg/L)	0.05	NW				
Alk (mg/L as CaCO ₃ )	68	60				
Hard (mg/L as CaCO ₃ )	12/	116				
Analyst	T.	$T_{7}$				
Time	615	1,500				

	Day		Renew	al Water	Batch ID & Tim	e .	<b>-0000000000000000000</b>	YCT#	pН	Cond. (µS)	Temp	DO	Analyst	Time
	Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	16,77	(su)	content (pas)	(°C)	(mg/L)	***************************************	,
	~1	.gotooooooooo			**************************************			AJA				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NVS 12	7/16
	0	877	2	0945	ያ <i>ት</i> ነ-	N	ISYO	845	7,1	361	93.4	7, I	Tr	1640
	1	<u> አ</u> ታት	1,7/	กิปร	877	148	1530	51/1			229	8.5	ÎŢ	0815
Sitte	2	<i>10-3</i> 011)	134	1030	\$0000000000000000000000000000000000000		<b>-</b> \$#	६५७	8.0		λ3.0	8.17	84	12 60
A31.m	3	<b>ና</b> ንት	7	0745	^agggg_000000000000000000000000000000000		W	845			22.8		<u>a</u>	1315
	4	<u>የ</u> ትት	M	(M)()	477	J.	1545	845	Ŋ. O		<i>2</i> 2.9	8.3	AS.	1237
	5	849	۸M	<i>የ</i> ጎመ	877	J	1520	845			<b>a</b> J.2	7.4	CO	1430
*	6	<b>5</b> 77	CO	MIS	877	2	1500	845			23,2	8.7	cø.	8150
	7	877	TR	0200	911	AS	1400	84-5	7.9	402	23.2	٦.6	AS	0938
	8	488	A5.	020n	58J	6	1515	ซี 45			23.4	7.6.	AS.	1200
	9	882	βμ	1030	***************************************	**************************************	ŹĦ	४ ५८	8.1		23.5	8R	BH	/ <u></u> 20
	10	882	AS	0915	wa^daweaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		AS	1145			23.5	2.3	AC	1013
	11	\$ 8:2 <u>.</u>	Λs	1030	487	(Q)	(600	8 W	8,0		23.6	6.6	014	1435
	12	862	AS	0750	822	As	1450	647			25,5	6.4	AS	1000
	13	K83	55	04D»	883	(Calc.)	1540	家山泽			92 B	હું,મ	I7	11.15
	14	880	珥	# \$2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************		847	7.4	369	23.4	7.6	T,	/230
	15	884	$\mathbb{Q}$	1600	30000004901111300011011900X	······	(W)	844			234,	<b>9</b> .t	Ø	1515
	16	gy)	D.	1140	*****************	***************************************	- I?	847	8.1		20.4	8-6	Tr	1342
	17	१४२	CH.	}0	A		-13#	843			<u> 23.5</u>	9.d	B4-	/ ⁷ 30_
	18	882	2	0850	082	AS	1430	ธษา	8.0		23 S	7.6	W	1115
	19	222	A-S	<u>0630</u>	882	As	1445	847			227	2.1	AS	1100
	20	682	<i>C</i> B	0215	992	AS	1600	ያዋገ			23.9	4.1	BH	#30
	21	884	A.	08 <b>4</b> S	<i>88</i> Y	1///	/h0	rut	1.9	3 4	14.2	7.)	هـ	7.601
	22	8 54	As	0545	884	$\omega$	154v	847			22.7	7.4	106	1655
	23	yru	B(4)	040	**************************************		-021	8417	8.3		14.6	8,5	BH	(3 <u>00</u>
	24	୫୫4	(W)	<b>1/43</b> 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(Kr)	847			246	<b>%</b> .3	(K)	1458
	25	<b>%</b> % Y	ΔŴ	0000	984	<u> 191</u>	1200	<u> </u>	8.1		٧٤٥	7.5		// 05
	26	<u>884</u>	VM	<b>M3</b> 0	294	ΔS	1500	84.9			<u> 23.0</u>	9.8	15	0910
	27	ପ ବିഷ	19-5	0930	884	W	(U)	811			22.6	<u>6. B</u>	<u> </u>	1020
	28	**************************************	••••••••••	44/5-	984	M	DW	851	7.8	374	20,9	7.6	Ţ	1/522

* King spillen - Forgatsins four and appliced.
Water quality measurements will be taken upon the 1" renewal of the day on the "out" water. QC: MS

Laboratory ID: Tetra Tech Test#: T t 04 0 4 3 Navajo Nation Organism Load Date/Time: V Client/Project: Anacostic 11/5/13 AS Sample ID: 10 HOG-BACK C43 Test End Date/Time: Species: H. azteca Sediment Volume (mL): 100 016 Corresponding Control Test #: Organism Batch #: Water Volume (mL): 175

Organism Age: 7 days

\$	Day	Replicate										
		5	6	7	8	9	10	11	12			
	0	10	10	10	10	10	10	10	10			
	42	9	8	10	8	9	7	8	(1			

m
10

Day	Renewal Water Batch ID & Time						YCT#	рH	Cond. (µS)	Temp DO	00	Anaiyst	Time
nay	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	1 40 1 77	(su)	rons per sheris	(°C)	(mg/L)	***************************************	******
29	886	MS	<u>0645</u>	SSK	177	1643-	853			93.2	~		1605
30	ର ନ ଦ	A S	12.10	· · · · · · · · · · · · · · · · · · ·		-11:S	953	7.5		22.9	6.2.	A-5	1345
31	386	ΛX	701	``````````````````````````````````````	·	99^~~000000000	<u> </u>			23.0	6.9	<u> </u>	11/1
32	78b	KYYS	MW	<u> </u>	NS	1530	<b>%63</b>	7.6		221.7	1.1	<u> </u>	1145
33	384	Q	ଅନ୍ତ	886	اعما	1530	854			223	8.2	<u> </u>	0833
34	996	A5	1050	886	LAS	1530	854			33.6		<u> </u>	1130
35	<b>የ</b> የን	W	क्र	887	كلالم	1500	814	7.5	341	23.1	8.9	A s	1030
36	<i>ሄ</i> ረ 7	T.	0860	997	A73	1530	054			4a, k	6.3	TT	0437
37	(65)	BU	1 km	000-AA00000/AA00-AA000/AA0000-A		$\mathcal{R}^{\mu}$		2.5		<u> </u>	6,6	<u>VH</u>	1410
38	889	84	Iuka	/*************************************		<b>-1</b> 3/}-	854			29.6	6.4	11-	145
39	<i>የረ</i> ማ	£r	0430	221	(a)	1530	854	7,6		21.4	6.0	T-	1045
<u>40</u>	867	BF	09(S	<b>0</b> 87	A:s	1515	854			22.S		B behave	<b>%</b> 100
41	847	BH	a (j ģ0/	(()	BH	15,30	854			33.8	6.5"	ßμ	0825
42	**************************************	•••••	***************************************	***************************************	•	24444880U000000AA	<b>W</b>	4.4	312	22.7	7.0	(W)	1540

	***************************************		Offspring per Replicate									
	Day	5	6	7	8	9	10	11	12			
	33	6	2	3	1	0	đ	5	5			
	42	13	23	25	IJ	3	24	2	15			
Tota	31	L(A	25	28	/ <b>Y</b>	3	λß	2	20			

	S	Sex Ratio per Replicate and # of Young/Female									
Day	5	6	7	8	9	10	11	12			
Males	. <b>"3"</b> "5	3	3	5	7	2.	5	5			
Femalés'	·6-4	5	つ	3	2		-73	6			
Young/ Female	4.8	5.0	Чo	ч.а-	lπ	<i>#</i> L.	2.3	7.7			
Female	1.0	U.V	1.0	7/7	1) 3	210	8(1)	(2) P			

		Sun	⁄ival	20
	Rep	Day 28	Day 35	
	5	9	9	
	6	Я	8	
12/13/15/	7	-4-0	10	
	8	4	8	
	9	10	9	12/20/181
	10	7		
	11	9	8 .	
	12	TOU	11	94
	12/13	/IDAS		· ※

ac: <u>W</u>

36,200

Sediment Load Date/Time: リカルビ Test#: T t 04044 Laboratory ID: Tetra Tech Nevalo Netion Organism Load Date/Time: Client/Project: Amocostian 11/5/18 AS Sample ID: 10 (AN TLAANE 26 20 Test End Date/Time: Species: H. azteca Sediment Volume (mL): 100 71-0400 Corresponding Control Test #: 016 Water Volume (mL): 175 Organism Batch #: Day Organism Age: 7 days ٥ Parameters Final Mean % Survival NH₃ (mg/L) 0.0% NM Replicate # Surviving Alk (mg/Las CaCO₃) 108 Analyst| Time 100 Day X 100 4 # Exposed Hard (mg/L as CaCO₃) 146 إنهائه 1 3 Νb  $T_T$ 10 10 10 Anaivst 0 10 3. 92,5 28 10 Time 1615 147 8 10 Ç Renewal Water Batch ID & Time Temp ρH Analyst Time Cond. (µS) Day (su) (°C) (mg/L)Renewal 2 Renewal 1 Analyst Time Analyst Time NDS MA/18 1075 3 M# 877 140 877 0945 /fIr M 7.8 4 23 133,6 7.7 Zi yu 1 MAS 22.9 877 M 15.30 841 0700 7.9 0815  $\mathcal{B}\mathscr{F}$ 1200 40 1118 1844 8.6 <del>230</del>77 ]0]0 841 72 s የትት 0744 10.3 1315 **\$**Y5 *a*29 ያትት ഗ്രമ 8.0 8. 2 AS 1237 ያንዓ W Ow 877 22. X 7.3 1430 1520 04 0450 8.8 A 877 877 1500 845 23,2 C6 0130 23.2 443 AS R 8.0 0938 877 0900 877 AS 1400 845 882 (W) 1515 845 23.4 5 AS 1200 0900 P15 a) (S BH //*a*a BH DH 847 811 883 1030 10 9,82 0915 645 23.5 1013 A.S AS 60 /2 Z.S 882 K 3 44 S  $C \cdot \lambda$ 1600 882 195 1080 12 1000 23.5 8 7 2 -MS. 682 25 1450 697 0850 8.3 \$ LO 蜜胡糟 92.7 17 13 J.G 0420 58 h (D) 1540 8 /C 1230 400 93.4 7.54 27 14 4283 24 1:30 27 847 8.0 (L) 23.6 48 15 88 Y W a gwy 1515 1600 384*)) Q*⊋.4. 8.8 7 16 \$82 Ty-847 1245 July 8.0 (8)  $q_{x}$ )},< 1230 11 30 84 17 882 7.5 (William 1115 The second Z\$ 3 ዕደናን 8.0. 882 1430 647 19 227 882 1445 1100 145 0770 As 682 641 8. 1130 20 23.9 647 *82 582 1600 CB 0915 AS 21 W 16W 844 8.0 422 24.2 XYY ጎ.ቀ 1035 884 A.5 0845 22,7 055 22 **%**%4 (540 847 ~"ુ. 884 08 48 300 884 840 8.1 2446 8.5 BH 23 PHO 847 W 244 24 384 W4) 15 1428 เหล็ว L. 1105 25 NXV 15W 949 **B**,U азм 8-የያላ KN) MW. **700** 26 ୩୫୯ W 33°0 9 0910 *ር*ት ን 884 1500 84-9 R5 1050 W, 27 004 MS 0930 884 Z00 (S 21.6 6. 28 кхи 20.9 7. 3 MW 8.0 437

Sediment Load Date/Time: Test #: T + 0 4 0 4 4 Laboratory ID: Tetra Tech navajo nation <u> - 本内acestiaーェレクタノル名 As Organism Load Date/Time:</u> Client/Project: Sample ID: 10 SAN TWANE 26 100 Test End Date/Time: Species: H. azteca Sediment Volume (mL): 175 Corresponding Control Test #: Water Volume (mL): Organism Batch #:

Organism Age: 7 days

Day		Replicate										
	5	6	7	8	9	10	11	12				
0	10	10	10	10	10	10	10	10				
42	10	8	8	9	10	9	10	9				

Final Mean % Survival	
# Surviving # Exposed	X 100
91.25	

Day		Renewal	Water 8a	itch ID & Time			YCT #	рН	Cond. (μS)	Temp	DO	Analyst	Time
GGY	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time		(su)	227,122, Ibrail	(°C)	(mg/L)		<u></u>
29	986	Pt S	0845	884	57	1645	853			<b>4</b> 34	7.1	(Q)	1608
30	ଷଷ୍ଟ	ΑL	12.10	***************************************		- A-S	<u>853</u>	7.5		22.9	6.0	<u> 45</u>	1295
31	886	Νb	ıûr	**************************************		······································	_2004			<u> </u>	6.8	Wp	1704
32	886	NYS	MO	986	LAS	1530	<u> </u>	7.1		<i>6</i> 23	6.9	rs.	1145
33	প্তিপ্ত	$\omega$	୦୫(ઽ	8 8 6	A:s	1530	054			82.3	<u> 7.3</u>	<u>(4)</u>	ార్కెస
34	9.86	AS	1050	886	اعما	1530	<u>854</u>			33.8	<u> </u>	B4-	1130
35	5XJ-	B	ଏଡ	817	1/30	<b>3</b> 370	814	1.5	341	23.1	2.0	A S	1030
36	প্তপ্ত	环	0850	<u> </u>	A3	1530	353-			83.8	60	IT	0753
37	(く)	BH	boossoorvivv	MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	+BH	Nyas	854	7,5		93.1	6.3	BH	
38	887	IBH-	167	***************************************	+8#	-B#	654			31.8	6,0	<i>B#</i> -	<u> </u>
39	g <b>8</b> 7	Sir.	0430	887		1530	854	7.6		<u> </u>	5.8	I)	2048
40	(f)	B.H	o415	987	HZ	1515	송소니			44.S	6-6	38./X	113°O
41	887	S 14	ు ( ఏక	667	BH	530	854			74.8	6.3	13 /4	58}°
42	9 ⁵ A-6 ⁵ Canton Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Cons		MAGAGAAA			***************************************	W)	73	3 0 Q	227	7,6	(es)	1540

		Offspring per Replicate									
Day	5	6	7	8	9	10	11	12			
3	5 16	l 1	13	34	a6	3	<del>2</del> 5	26			
4	2 31	6	13	34-	32	35	۱.,	33			
Total	<u> </u>	13	ac	58	50	37	50	59			

	S	Sex Ratio per Replicate and # of Young/Female										
Оау	5	6	7	8	9	10	11	12				
Males	5	6	5	3	4	2	4.	4				
Females	5	2_	3	6	6	7	6	5				
Young/ Female	۹.۲	315	СЗ	<b>ባ</b> .ት	9,7-	S.Y	8,3	11.8				

MAQQQQQqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	Survival							
Rep	Day 28	Day 35						
5	l O	10						
6	W	8						
7	10	8						
8	10	q						
9	-40-11	10						
10	9	9						
11	10	10						
12	9	q						

Sediment Load Date/Time: Test#: T + 04045 Laboratory ID: Tetra Tech Navajo Nation Organism Load Date/Time: -Anaeostia-11/5/18 AS Client/Project: Sample ID: 06 ( MACO & LVO4 Test End Date/Time: Sediment Volume (mL): 100 Species: H. azteca 175 Corresponding Control Test #: Organism Batch #: 🚫 📞 Water Volume (mL):

Organism Age: 7 days

Day		Rej	olicate		Analyst	Time	Final Mean % Survival # Surviving		
	1	2	3	4			# Exposed X 100		
0	10	10	10	10	NB	interference in	~~		
28	8	5	5	4	Ars	:230	2 2		

		Day
Parameters	O	28
NH, (mg/L)	0.04	TAN
Alk (mg/Las CaCO ₃ )	44	78
Hard (mg/L as CaCO ₃ )	18	124
Analyst	Ir	T _r
Time	1615	1/50

	······································	Renew	al Water I	Batch ID & Tim	e		YCT #	рН	Cond. (µS)	Temp	00	Anaiyst	Time
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	Y (, 1 H	(su)	cono. (ps)	(°C)	(mg/L)		<u></u>
-1	AAAA00********************************	***************************************	***************************************	.0000000000000000000000000000000000000			- NA				***************************************	WP 1,	<u> </u>
0	877	P	∂945 [™]	<i>ያ ጓ</i> ን	NYS	/550	84C	8.0	И14	25.1	7.3	I.,	1640
1	87ት	<b>X</b> }/\	170	877	748	1530	810			22.9	8.4	E7	05:15
2	877	<i>B H</i>	630	***************************************		0H	r45	8,0		27,0	8.0	Blt	1/200
3	<u>የ</u> ንት	1	0745	***************************************		خلالا	1/V			228	10-3	(W)	1315
4	የትት	WS	0900	677	<i>I</i>	1545	845	8. l		22,9	8. 9	Àς	1277
5	877	100	<i>ለ</i> ባው	877	A	1520	845			<u> </u>	7.5	CB	1475
6	377	c 🎸	0115	877	12	1500	845			73.2	4.}	cý	0950
7	¥77	TR	0900	8 J J	85	14.60	545	7.9	460	23.2	18	<u>A5</u>	0938
8		<u>ns</u>	<u>a 900</u>	<u> </u>	<u> </u>	1515	845			23.4	ــــــــــــــــــــــــــــــــــــــ		1200
9	862	B.JL	ుశ్రీం	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-8#	8-47,	8-0		2 <i>},</i> ∫	9.0	BH	//00
10	882	<u>Ai</u>	2150	**************************************		<u> A s</u>	545			225	7.7	As	1013
11	882	<u> As</u>	1030	882	· 60 ,	1400	8 45	7.4		23.6	6.6	<u>BH</u>	<u> </u>
12	882	AS	6850	002	A-s	1450	<u> </u>			235	6.7	<u> </u>	1000
13	440	Si	(A)0	<u> </u>		15 U.O	<u> </u>			22.3	8:3	T.	11/5
14	¥83	S.	113.7	**************************************		I'r	847	8.0	43/	13.4	7.6	I'7	/330
15	662	<u>(6)</u>	\(, oa	**************************************		Ø	8417			23-6	9.0	<u></u>	12(2
16	4k2	I.	1170	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- <u>6</u>	₹¥17	8.4		224	66	<i>9</i>	13.45
17	<u> </u>	<u>BH</u>	<u>  30  </u>	· ····································	***************************************	· \$\f	842			<u> </u>	9.01	BH	1332
18	<u>882</u>	2	ିଥରେ 🏻		AS	1430	847	87 G		233	ગ્જ	(4)	lits
19	8 3 2	عم ا	0830	382	A-s	1445	547			F.23	٦٠٦	هج.	11.00
20	882	<u> </u>	0812	882	AS	1600	<u> </u>			<u> </u>	4,5	<u>BH</u>	<u>  [80</u>
21	884	<u>AS</u>	<u>0545</u>	884	Mi	1600	847	7.9	378	24.2	1.5	<u> A</u> S	1035
22	<u> </u>	بكتك	0 245	884	(W):	1540	8414			22.7	<u> 7.5</u>	حهر	<u>لبه چ ځ</u>
23	<u> </u>	<u>B</u>	janq				842	811		34/6	4.1	<u>BB</u>	13.10
24	584		\4 <i>1</i> ,5			(K)	<b>847</b>			24.6	<u> </u>	<u>(u)</u>	1428
25	<u> </u>	Ν̈́Ł	000	984	404	(200	<u> </u>	8.0		كيتم	7.0		1105
26	<u> </u>	NO?	<u>0 (30</u>	98	<u>As</u>	1570	84-9			<u> </u>	<u> 5. 6</u>	عد.	<u>ngip</u>
27	8 % 4	<u>A:1</u>	0970	<u> GNU</u>	N	1000	85/			22.6	2	<u> </u>	1050
28	<i>3</i> 54	<u> </u>		<u> 814                                   </u>		IW	LSCI	7.1	<b>1</b> 423	30.4	7.4	17	//13

Sediment Load Date/Time: Laboratory ID: Tetra Tech Test#: T t 04045 Navaje Nation Organism Load Date/Time: Client/Project: Sample ID: 06 CHACORIVO4 Test End Date/Time: 100 Species: H. azteca Sediment Volume (mL): - 0 405D 175 Corresponding Control Test #: Water Volume (mL): Organism Batch #: 7 days Organism Age: Final Mean % Survival Replicate # Surviving Day X 100 # Exposed 7 8 10 11 12 5 б 9 10 0 10 10 10 10 10 10 10 96,25 B 10 10 10 42 Temp 00 Renewal Water Batch ID & Time Analyst Time YCT# Cond. (µS) Day (mg/L) (°C) Renewal 2 (su) Renewal 1 Analyst Time Analyst Time 23.2 7.0 (W) 1205 1645 29 886 85) 886 0845 1 5 <u> 053</u> 3 1245 7.6 30 AS 886 As 1210 <u>6.9</u> <del>/W</del> /W/S J3. O W) 31 226 JOIS W 3 7.0 7.8 32 WN MW 853 886 886 1536 8×8 8-0 (W) 223 0835 854  $\omega$ 0815 33 886 530 884 AS B H 130 34 1570 65**+** 1050 886 7.5 A87 343 W Qso) u 23.1 AS 1030 35 *የ*88 **0**3. 8 61 0450 in a 36 287 0850 207 854 854 7,5 43. 887 37 1da 1(20 850 38 1140 27 10-10 82N 0130 W 39 887 76 987 22,5 71 3V 1115 8-Sc 40 88) 687 33.8 ०१३० 0800 887 88 41 321 74 9.0 1540 Survival Offspring per Replicate Day 28 Day 35 12 Rep Day 5 ő 8 9 10 11 10 ች 2, 5 10 35 7 7 ð 6 0 10 13 Total 8 , ATT Sex Ratio per Replicate and # of Young/Female  $\mathcal{Q}$ 10 Day 5 10 12 8 11 10 0 11 Males 7 ¥ Females Ų.

2,

2.3

Young/

Female

0.13

Sediment Load Date/Time: 11/7/19 Test#: T t a 4046 Laboratory ID: Tetra Tech Navajo Nation Organism Load Date/Time: Client/Project: Anacostia. 11/5/18 As Sample ID: 10 HOG&BACKር 44 Test End Date/Time: 100 Sediment Volume (mL): Species: H. azteca Corresponding Control Test #: イナリリイグ Water Volume (mL): 175 Organism Batch #:

Organism Age: 7 days

Day		Rej	alicate		Analyst	Time	Final Mean % Survival  # Surviving X 100
	1	2	3	4			# Exposed X 100
0	10	10	10	10	N	~	10 T
28	10	8	ΙO	9	W	Non	420

		Day
Parameters	0	28
NH ₃ (mg/L)	0.31	NM
Alk (mg/L as CaCO ₃ )	1,20	<u> 15/</u>
Hard (mg/L as CaCO ₃ )	756	174
Analyst	57	<i>17</i> ;
Time	1615	152

Day	***************************************	Renew	al Water I	Batch ID & Tim	e	y	YCT #	рН	Cond. (µ5)	Temp	DO	Analyst	Time
203	Renewai 1	Analyst	Time	Renewal 2	Analyst	Time		(5u)	, , , , , , , , , , , , , , , , , , ,	(°C)	(mg/L)		1 7 . 7 .
-1	000000000000000000000000000000000000000	***************************************		*****************************			**************************************		-	***************************************	······································	\$\$\$	Y7/~
0	877	2	0945	<i>9</i> 21	108	1532	SYS	7.8	HOI	43.1	7,4	I.7-	11640
. 1	<i>ያት</i> ት	NK	0780	877	N	1530	847			20.9°	7.4	FT	U815
2	4021677	BH	1030			-DH	845	7.9		<u>)</u> ),0	8.7	<u> </u>	3.00
3	<i>ያ</i> ንት	1	o 745°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·My	<u>842.</u>			228	105	(W	1315
4	877	UGG.	<b>ም</b> ው	£77	4	1545	8.45	8.0		209	8.9	AS	1217
5	877	WB	OW	877	2	1520	845			<u> 23.2-</u>	1.7.5	<i>CB</i>	1435
6	877	c.Ar	04/5	877	2	1500	845			23.2	8.1	<u></u>	0112
7	877	TR.	a900	ชาก	AS	1400	845	7.7	4-2 "1	232	<u> </u>	<u>ns</u>	<u> </u>
8	882	A5	0700	882	ଭ	ISNS	845			23.4	<u>l 1.8.</u>	<u> </u>	1200
9	882	DH	/63°	V		7874	845	8.0		13.S	18.9	134	1100
10	7 8 Z	Αs	0915			As	1:45			23.5	175	<u> as</u>	1013
11	882	- Bi	1030	882		<u> 160 : </u>	841)	12.4		23.6	16.4	BH	1435
12	687	Æς	0850	882	As	1450	647			23.5	6.4	<u>ns</u>	1000
13	LL)	54	0402	882	a	เรษย	৪৭ন			22.3	8.2		11.75
14	839	$\mathcal{L}_{f}$	1130			~~~~;``}	947	7.4	Чα	13.4	7.5		1230
15	884	@ .	1600	47444444444444444444444444444444444444	***********	(Q)	৪৸৸			A3. (,	7.2		(S/S
16	849	S-	17.30			-17	8240	8.0		22.4	6.5		13-45
17	88y	04	l130	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> -B#</u>	845			335	11.3	<u> </u>	<u> </u>
18	BB 2	Ar.	085G	982	m s	1430	5,47	9.4		43 3	17.4		1445
19	882	A.S	0830	882	AS	1445	247			2223	8.3	As	1180
20	682	Cβ	0915	882	As	1600				23.9	4.2-	<u> BH</u>	1180
21	8 <b>8 4</b>	AS	0845	884	1405	1600	ryt	7.9	339	24 2	<u> </u>	AC.	1035
22	884	ΔŞ	ু ৫ প প্র	884	(W)	1540	847			22.7	1.5	AS.	1055
23	844	BIL	QN9	**************************************		BH	841>	6,1		24,6	15:5	BH	1310
24	8 <b>8</b> 4	(W)	1429			0	847			24.6	<b></b>		<u> 1428</u>
25	984	MI	1900	R84	کلایا	1200	849	8,0		<u> </u>	7.5		1105
26	884	1SD	0330	884	3	(530	049			<b>W</b> 10	<u> 5. 5.</u>	<u> </u>	منعما
2.7	984	ΛS	0930		Űb-	1000	817			22.6	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	1050
28	***************************************		W	<b>31</b> 4	11/1	302	<b>8</b> 77	7. 7	H05	20,9	7.3	[7]	143

σc:**1**/**/**//

Test #: T+04046 Laboratory ID: Tetra Tech Sediment Load Da

NAVAJO NATION

Sample ID: 10 H0 G SALK C 44 Client/Project: -**Anacostda"11/5/18 As Organism Load Da

Species: H. azteca Sediment Volume (mt): 100

Organism Batch #: 06 Water Volume (mL): 175

Organism Load Date/Time: 176

Test End Date/Time: 1みかル

Corresponding Control Test #: 140400

Organism Age: 7 days

Oay				Replica	ste			
	5	6	7	8	9	10	11	12
0	10	10	10	10	10	10	10	10
42	10	9	8	9	10	10	8	B

	# Surviving	
ggggnnnnnnnnnnnnnnnnnihil	# Exposed	X 100
		AAA000000000000000
	^	
	Чn	

Day		Renewai	Water Ba	tch ID & Time			YCT #	ρН	Cond. (μS)	Temp	DO	Analyst	Time
rya y	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time		(su)		(°C)	(mg/L)		
29	886	Ars	0845	684	J77	¥45	¥1(3			23.2	0.F	(4)	<i>405</i>
30	986	<i>f</i> >; 5.	(2 ) () 1			~AS	853	7.6		22.9	6.6	45	12-15
31	21/2	NB	101J				NMT.			<u> 27. o</u>	五上	NB	1104
32	886	1815	Ulw	986	A.s	₁ S 30	<b>%53</b>	7.8		223	7.2	AS	0145
33	884	0	(781)	୧୫୧	Per S	1530	65 <b>4</b>			223	g. :		0835
34	886	As	1050	196	AS		854			12.8	6.3	BH	<u> </u>
35	\$\$3	W	COM	887	NAS	/J <i>i</i> /0	[my	7.5	343	23.1	9.0	AS	1030
36	437	T.,	03:3	୯୯୩	A3	1530	854			82.8	<u>G-Q</u>	207	<u> </u>
37	86>	BH	(1 Or	AAA	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-LH	854	7.5		33. (	6.0	B4	1212
38	687	,,	1140	**************************************	ļ	<b>-</b> \$\f#				<u> 37.8</u>	6-1	BH	1120
39	<b>487</b>	124	0130	437	(i)	(530	854	7,6		92.9	7,6	II.	670
40	867	15/+	04/5	887	As	1515	854			24.5	6.		09 kg
41	787	BIF	০ 🇸 প্ত	(4)	BH	<i>[53</i> 0	856			24.8	65	<u> BH</u>	183S
42	************************	box		000-000-000-000-000-000-00-00-000-00-00		······································		ЭЧ	315	120.7	7.2	(4)	1540

***************************************	***************************************	0000	Offsp	ring per	Replic	ate		
Day	_5	6	7	8	9	10	11	12
35	O	13	13	5	2	10	١	7
42	20	10	19	6	23	19	20	12.
Total	3.0	22	<b>42</b>	5	25	29	<b>ኤ</b> ١	194

	S	ex Ratio	per Rep	olicate a	nd#of	Young/	Female	3
Day	5	6	7	8	9	10	1.1	12
Males	5	4	3	7	Ø	4	3	3
Females	5	5	5	2	Ц	6	5	5
Young/ Female	Н. о		L.Y	25	12	0	8.8 %	~ 0
Female	1,0	7,7	<b>5.</b> T	OK 1-3	W. >	7.0	4,2	l i

	Sur	/ival
Rep	Day 28	Day 35
5	9	ч
6	MyZ9	9
7	ñ	~لارز
8	Q	9
9	10	10
10	70	.10
11	S	8
12	-f 18	8
9,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2/6/18	Arc

12/6/18 195

Sediment Load Date/Time: 11/7/16 Tetra Tech Test#: T + 0 4 0 4 7 Laboratory ID: Nevelo Netion Organism Load Date/Time: / I Client/Project: -Anacestia 11/5/18 As <u> Sample ID: 07 MAN(055101</u> Test End Date/Time: 100 Sediment Volume (mL): Species: H. azteca Corresponding Control Test #: TEUYUSO OPP Water Volume (mt): 175 Organism Batch #: Day 7 days Organism Age: Parameters  $NH_3$  (mg/L) 016 NM Final Mean % Survival Replicate # Surviving Alk (mg/Las CaCO₃) 89 Analyst Time Day X 100 Hard (mg/L as CaCO₃) # Exposed 110 120 1 3 2. 10 10 10 10 Analyst Er 0 16.5 Time 1150 8 0

				Batch ID & Tim	00000000		·····			Temp	DO	I	·	-
Day	Renewal 1	nenew Analyst	ai water Time	Renewal 2	e TAnaivst	Time	YCT#	pH (su)	Cond. (μS)	(°C)	(mg/L)	Anaiyst	Time	***************************************
···········	,20000000000000000000000000000000000000		**************************************	000000000000000000000000000000000000000	***************************************	***************************************				***************************************	***********	TAB 7	47.14	, m
0	877	2	0945	877	TX\$	1575	9Nr	7.4	444	731	7.3	ſĩ	1640	£3
1	100 . 0	W	10650	872	1011	1850	a kr			22.9	8,0	ΙT	عريون	7
2	103011)		1030	**************************************	***************************************	NH-	8412	8.0		) <u>?</u> , O	6.4	BH		ļ
3	<i>የት</i> ት	Arr	0745	**************************************	***************************************	W	845			225	10.4	(a)	1311	-
4	<b>%</b> 33-	AD T	000	677	7	1545	845	8.0		<i>2</i> 29	8.8	Äs	1237	_
5	893	NIL		877	7	1520	845			<u> 23,2</u>	7.4	_cø	1435	
6	<b>9</b> 77	CB	0915	9.77	J.	15°00	845			23,72	4.0	<u>ండ</u>	0950	***************************************
7	877	JV.	0900	9:77	ns.	1400	<u> 845</u>		448	23.2		<u> </u>	0238	-
8	<u> </u>	<u>AS</u>	0900	882	(a)	1515	845			22.4	<u>, 2</u>	<u>As</u>	117.00	å
9	887	84	1030		***************************************	<u> </u>	845	8,0		<u> 27/5</u>	8.9	13 14	1/45	, ,
10	882	AS	0915				245			235	ــــــــــــــــــــــــــــــــــــــ	ــــِدِمِــِــــ	1:2:3	Š
11	8 8 2	<u> </u>	1030	<u> </u>	Q	1600	345	4.0		116	<u> </u>	<u>8 H</u>	2224	Š
12	\$ \$ 2-	<u> </u>	05SD	882	<u>As</u>	14-50	847			23.5	6.0	AS.	1000	ž
13	44	51	(%) <i>()</i>	38h		1240	<u> ১৭ল</u>			223	<u> </u>		<u> </u>	, and
14	444	<u> </u>	440	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		L St	247	6.0	40(	23.4	7.6	T:-	1234	ž
15	<u> </u>	W	11000	***************************************		<u> </u>	344			23.U	<u> </u>		15/5	ş
16	<u> </u>	S	7640					8.1		33.4 	40	<i>5</i>	13 45	ş
17	<u>V</u> (3	<u> </u>	1140	***************************************	***************************************	-78 X	842			33-5	4.4	<u> </u>	1130	
18	882	<u> </u>	<u> 2856</u>	882	<u>AS</u>	1430	247	8.0		23.3	7.9	(60)	ļ	~
19	932	<u>As</u>	<u>0830</u>	0.82	<u> </u>	1445	847			223	1246	LAS-	م کیا	
20	232	<u> </u>	عنيم	882	AS.	1600	847		_	23.2	4.3	<u> </u>	<u>   3°</u>	
21	194	A4	0845	984	11/9/1/	1600	84-	7. 9	390	29.2	1	As_	1035	~~i
22	884	LAS.	caas	884		<u> 11540</u>	1844 1844			22.7 24.6	124	LAS.	10.55	3
23	<b>18</b> 14		10149	**************************************		<u> </u>	842	811			8.4	<u>le</u> +-	<u> </u>	•••
24	<u> </u>	<u> (w</u>	CANI		1		<u>FW2</u>	**** ^		34.6	139 169		1105	₩į
25	<u> 104</u>	<u> </u>	0000	<u> </u>	ME	ne	849	20		<u> 23. Y</u>		<del> </del>	d	~
26	96Y	<u> </u>	0770	283	<u>LAs</u>	1500	24.2			23,0	£ 3	<u>  ^                                   </u>	0319	- 3
27	894	AS.	0930	8871	WQ.	1JU2	<u>gr/</u>		H3 7	22.6	7.3		1050	,,,,
28		<u> </u>	₩ <u></u>	<u> </u>				8,0		1000	<u> </u>	L * 7	722	

ac: **(\%**)__

Sediment Load Date/Time: \\ Laboratory ID: Tetra Tech Test#: T t 04 047 Naitall OCHAN <u> Anacostla 11/5/18 As Organism Load Date/Time:</u> Client/Project: Sample ID: 07 MANCOS RIDI Test End Date/Time: 100 Sediment Volume (mL): Species: H. azteca Corresponding Control Test #: TEO40TO 175 Water Volume (mL): 016 Organism Batch #:

Organism Age: 7 days

Day				Replica	ote			
	5	6	7	8	9	10	11	12
0	10	10	10	10	10	10	10	10
42	8	6	-7	8	8	6	8	8

 Final Mean % Survival	000
# Surviving	X 100
# Exposed	X TOO
 ······································	
73,75	
*	

Day	***************************************	Renewal	Water Ba	tch ID & Time			YCT #	Нq	Cond. (µS)	Temp	DO	Analyst	Time
Uay	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time		(รน)	Abria (fort	[ (°C)	(mg/L)		
29	୧୫୧	A٤	0845	586	<i>17</i>	1645	313			<b>2</b> 3.2	7.2	(W)	1205
30	୭୫.6	A-C	12.10			<u> </u>	89	la.6		12.9	<u>6.1</u>	A.S.	1295
31	2.87	M>_	14)6		·		<u> 46</u>			<u> </u>	7.1	18)?	LLOY
32	828	NXD	MW	6 B 6	<u> As</u>	1530	053	7.8		<u> 203</u>	7.1	N3	1145
33	ક્કર્ષ	(W)	0815	886	<u>Prs</u>	1530	<u>854-</u>			<u> 22.3</u>	8.4	(42)	0935
34	886	AS	1050	886	LR-S	1530	854			31.8	6.8	1824	11/42
35	88ን-	da	(902	887	W	1(00	807	7.5	342	23.1	9.1	As_	1030
36	887	Ty	OSS	987	A'S	1530	554			82¥	<b>4</b> -(	<u> </u>	0.62
37	66>	BIL	1200			<u> BH</u>	L.3L	ン・ジ		23,1	6.8	BH_	كيلا
38	687	CH	ΪΨδ	ZARIFOTO CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR A	non months and market	UH	४८५			9-9-8	6,3	BH	(180
39	887	Ir	0530	889	(Q)	630	854	7,6		<i>3</i> 2.9	600	<i>F7</i>	1040
40	667	BH	0415	887	A.C.	1515	854			J 1-5	6.4	<u>B4</u>	<u>0430</u>
41	617	Dμ	6 <b>(</b> /2)	86>	157	1,530	854)			32.8	66	B4-	2 £ 3 S
42	***************************************			***************************************			Lø.	77.5	316	22न	6.5	(W)	1540

			Offsp	ring per	Replic	ate		
Day	5	6	7	8	9	10	11	12
35	3	0	b	0	٥	4	0	7
42	8	Ó	0	9	10	4	6	2
Total	L)	Ü	Q	cı	10	8	6	9

	S	Sex Ratio per Replicate and # of Young/Female								
Day .	5	6	7	8	9	10	11	12		
Males	<b>-45</b>	3	3	4	3	3	3	4		
Females	-4-3	3	4	4-	5	3	5	4.		
Young/ Female	3み	0	0	2.35	2.0	23	1.2	2.3		

g	annamannamannaman	***************************************
	Sun	vival
Rep	Day 28	Day 35
5	9>	8
6	6	6
7	~3	7
8	B	9
9	B	8
10	6	6
11	8	6
12	Я	В

Hyalella azteca 42-Day Sediment Toxicity Test Sediment Load Date/Time: 117/16 Laboratory ID: Tetra Tech Test#: Ttoto48 Nevajo Nation HIW <del>Amerosta u/S/18</del> AS Organism Load Date/Time: \ Client/Project: Sample ID: 10 FR WCANAL 45 13/2/1/6 100 Test End Date/Time: Species: H. azteca Sediment Volume (mL): FE CHASO Organism Batch #: AI6 Water Volume (mL): 175 Corresponding Control Test #: Day Organism Age: 7 days **Parameters** Final Mean % Survival NH₃ (mg/L) 007 ИW Replicate Alk (mg/L as CaCO₃) 42 # Surviving Analyst Time 116 Day X 100 # Exposed Hard (mg/L as CaCO₃) 152 3 158 MΛ 0 10 10 10 Analyst 17  $\mathbb{T}_T$ 95 28 Time 615 1/50 1425 0 10 Renewal Water Batch ID & Time Temp Analyst Time YCT # Cond. (µS) Day (mg/L) Renewal 1 Analyst Renewal 2 Analyst (su) (°C) ₹/8 -1 *** 0945 7.4 877 344 0 877 845 7.4  $\eta, \tau$ 640 1571 877 IJω 23) 877 ŒЯ виt 1 \$. ^> T, 0825 800 BH. 9.4 23,6 8.5 вH 12a0 10)0 845 0745 **የ** ትጉ ХЧҮ 10.5 23.8 134 MY 877 8ንት 1545 OW 845 8.2 234 1237 8.8 A5 ያንት 5 *3*3.9 190 1520 845 8.0 1425 C.S 6 874 ΛXIS Min 1500 845 24.) Q. I 60 7 877 AS 845 433 0900 877 400 8.0 22.3 8.2 TR 882 AS 862 1515 545 0900 B/L 8451811 224 88 J  $\mathbb{R}_{\mathcal{H}}$ 1030 8,8 BŁ 108 10 22. 1

OUD. 0938 1200 រឲ្យ 682 895 ) SÓ  $\langle \omega \rangle$ 11 482 845 8/1 882 As 1600 1030 12 0750 982 7.4 AS 90 B 2 PS. 1450 547 22.0 1000 Jan y ୍ବ ଓଟ 249 13 880 Ø82 (W) X.I 4540  $\mathcal{I}_{\mathcal{T}}$ 1135 0933 433 242 Popo 1130 847 8.1 21,-7 7,7 Ty. 123  $\langle \omega \rangle$ 15 (D) (Q) 847 22.9 71.8 (575 Coa 1600 9.5 T 134 16 K87 24 21.5 1140 82 8247 684 04 Q, I 6.4 Bil 84 1350 17 18 882 ₹.% (6. 8.0 22.0 882 11.97 19 "እር ው 882 AS 0830 982 A-5 22 00 ([**]**\% 20 882 60 0915 ዓ. 8 2 Pt S 21 ХҮЧ Ø. 0 424 6.5 884 AS 0645 22.0 A.5 1020 22 540 844 24.5 1050 0845 889 ム> BH 8.1 1500 23 1130 24-6 BU (K) 228 24 じんりん WÌ 844 ٦., 1432 884 25 (052 80 Y 7.9 884 26 384 1500 04-9 173 0900 2.7 884 KW Mr 1050 408 884 7.4 TT 7,4 Townson.

* sow inputed remode is contral - gland in souther cophrists

Water quality measurements will be taken upon the 1st renewal of the day on the "out" water.

ac:_**/()/>**__

Sediment Load Date/Time: 11/7/18 Laboratory ID: Tetra Tech Navijo Nation <u>/≤/18 AS Organism Load Date/Time:</u> ₩ Client/Project: . Anacostia. Sample ID: 10 FRUCANAL 45 Test End Date/Time: Species: H. azteca Sediment Volume (mL): 100 COWO-IF Corresponding Control Test #: 175 Water Volume (mL): Organism Batch #:

Organism Age: 7 days

Day				Replica	ite			
	5	6	7	8	9	10	11	12
0	10	10	10	10	10	10	10	10
42	ĮΟ	9	7	9	9	в	9	6

Final Mean % Survival	
# Surviving	¥ 100
# Exposed	X 100
//////////////////////////////////////	300000000000000000000000000000000000000
グラネイ	
02,70	
* *	

Physics .		Renewal	Water Ba	tch ID & Time			YCT #	рН	Cond. (µS)	Temp	DO	Analyst	Time
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	36371	(su)	on personal forms	(°C)	(mg/L)		
29	୧.୧.	AS	ი გ45	586	277	1685	813			<u> </u>	7.4	<u> </u>	(205
30	886	AS	1210			~~ A5	053	7.6		22.9	000000000000000000000000000000000000000	A3	12-50
31	886	NQVS	IOUT	0-14-1-001-0-001-1-1000000000-		************************	448				7.3	<u> </u>	LOU
32	886	NN	ሀየው	086	AS	1530	253	7.8		<u>223.3</u>	6.2	As_	1145
33	880	Q	<i>୭</i> ୪\5	886	ድሬ	روزور	854			<i>a</i> a 3	87	Ø	0835
34	886	Αs	(0GD)	086	AS	1630	854			<u> </u>	618	• BH	[142
35	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.Nh	09D	<i>የ</i> ኔት	NWS	16W	8r4	7.5	341	23.1	9.0	AS.	<u> 1030</u>
36	447	J.	0850	8 0 T	M	/536	95 <b>4</b> -			9a. K	6-3	g.	0452
37	የየን	1BH	( <b>)</b> (30	-000000000-000000000000000000000000000	***************************************	B14	RIGH	7.5		23.(	6.2	<u> 184-</u>	1315
38	887	BH	1144	-sameter-construction of the construction of t	, and a second	- <b>ይ</b> ዙ	854			λ <b>\</b> · <b>&amp;</b>	6.4	B14	1150
39	<i>2</i> & 7	Cr	Ois	887	(a)	(53o	8 <b>5</b> 4	7.7		20,4	5.3	T _T	640
40	867	B# 1	115	087	Δz	រតាទ	454			JL.S	6.5		P4125
41	862	OH	क्षुक	<u> </u>	2.222.3	1530	834			12.8	€.વ	B#	0/11/
42	00000000000000000000000000000000000000	60-1-0000000000000000000000000000000000	***************************************	×		***************************************	-12	무시	318	22.7	74	(D)	1540

	S	Sex Ratio per Replicate and # of Young/Female							
Day	5	6	7	8	9	10	11	12	
Males	3	ς	2	2	2	5	3	3	
Females	٦	4	5	7	7	3	6	3	
Young/	, n	g Same og	ッヽ	š	1111	<i>(</i> %	63	17.7	
Female	3.7	3,3	5. 2	2.4	7,4	UT	215	1241	

	Surv	/ival
Rep	Day 28	Day 35
S	10	10
б	9	Ŷ
7	9	7
8	9	9
9	9	٩
10	- 8	7
11	10	q
12	76	Ы
	Mrkam:	***************************************

(Mul)

ac: 16

Test#: <b>T+ g4-049</b>	Laboratory ID: Tetra Tech	Sediment Load Date/Time:
Sample ID: 10 FRU CANAL 40	Navajo Nation Client/Project:	Organism Load Date/Time:
Species: H. azteca	Sediment Volume (mL): 100	Test End Date/Time: (2 10 16
Organism Batch #: 0 ( 6	Water Valume (mL): 175	Corresponding Control Test #: 160400
Organism Age: 7 days		Day
		Parameters 0 28

	Day			olicate	***************************************		, , , , , , , , , , , , , , , , , , ,	Final Mean % Survival		
						Analyst	Time	# Surviving V 100		
		1	2	3	4	***************************************		# Exposed X 100		
-	0	10	10	10	10	W.	-340Pa-	0,0		
	28	7	8	8	,	Na,	Aggregation of the Samuel	79		

	Day					
Parameters	0	28				
NH ₃ (mg/L)	0.01	NW				
Alk (mg/L as CaCO ₁ )	552	- Ya				
Hard (mg/L as CaCO ₃ )	130	l-lo				
Analyst	IT	Ir				
Time	16,5	1152				

		Renev	val Water	Batch ID & Tim	e ()	***************************************	VCT#	рН	0 1 ( 0)	Temp	DO	<b></b>	<b>*</b>
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	1 1614	(su)	Cond. (µS)	(°C)	(mg/L)	Analyst	Time
~1	40,444,444,444,40000000000000000000000	**************************************	•			A000000000	NA	***************************************		***************************************		7/1 4/	1/100
0	<u>877</u>	12	0945	874	Nb	1575	841	7.4	367	937	7.7	1. J.K. J.F.	1640
1	877	MS	0640	877	MJØ	15W	800m			23.7	8,6	T.	O8\$
2	(222	BH	/aJ0	<b></b>	· · · · · · · · · · · · · · · · · · ·	·BH	848	2.4		<b>)</b> }, Ч	9,0	BH	/ <b>k</b> @
3	<b>8</b> 973		<i>745</i>	~~~		ИS	842			23.4	10.0	(C)	1311
4	812	MP	(PPV)	877		1545	845	8.2		JK b	8. 9	As	1237
S	529	MP	ďω	877	#	1520	845			aj.g	7.9	೧ತ	(430
6	877	NS	ηŶω	877		1500	845			au.s	8.9	CO	0125
7	<u> </u>	lje.	0000	<u> </u>	AS.	1400	545	8.0	432	22.3	9,2	Ąζ	p938
8	885	<u> </u>	<u> </u>	984	W.	1515	845			22.2	g. 3	AS	1200
9	<u> 812 - </u>	<u>18 /4  </u>	1030	******************************		84	845	8/2		22. T	8.9	B/4	1100
10	432	As_	2215		***************************************	As	645			2.1.2.	7.9	AS	1018
11	082	AS	1030	862	Ŵ	1600	SAS	8:3		22.1	6.4	ВK	)J SO
12	292	As	0 <u>250</u>	- 2	<u> 195</u>	1450	୧୫୩			22.0	7. 4	85	1000
13	<u> </u>	Fi	642a		W.	<u> 1640</u>	gua			Q1, 4	<b>8</b> .3	71	lis
14	880	F7	1150		***************************************	- £7	847	8.5	400	247	G-0	J.Ty	1230
15	867	$\bigcirc$	1600	000000000000000000000000000000000000000		<u>(W)</u>	surt			774	3-3	(F)	1515
16	<u> </u>	Er.	1140	***************************************	***************************************		<i>847</i>	જ, ન		21.9	4.0	¥	12:45:
17	689	BL	19819	Mgs.coooca4400457444440000044000004	************	BH	847			22.	8,9	1714	]73 ₀
18	<u> </u>	2	0850	882	As	1930	<i>5</i> 47	81		રૂર,ઇ	7.0	Q	1107
19	982	<u>As</u>	0070	882	A S	2441	<u> 847</u>			22.0	<u> 2. 6</u>	<u> </u>	1100
20	982	<u> </u>	0215	132	ĄŞ.	1600	947			21.7	9.6	<u>BH</u>	<u> </u>
21	<u>884</u>	As	<u> </u>	884	79/2	160	849	8.2	382	<u> 22.0</u>	6,2	AL	1020
22	<u> </u>		<u>0245</u>	384		1540	844			24.5	<u> </u>	<u> </u>	1050
23	(84	<u>B4</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NGO/AASOAAAAAAAAAA	-Ø#	BH	845	्हें (			8,1	SH	13 oo
24	884		<u> 1495  </u>	**************************************	(C)	~~~~~ <del>~</del>	<u>849</u>			228	7.5		1432
25	804	200	MW	884	N	<u>16w</u>	<u>  222</u>	ଅ∵0		28.7			1052
26	SIU	NW	<u>0330  </u>	<u> </u>	Λ: <u>.</u>	1200	and day in the state of the state of			22.8	8.6	ÀS.	2200
27		<u> </u>	<u> </u>	<u> </u>	<u> 1807  </u>	oudopromyrene p	<u> </u>			22.8	1.4	<u> </u>	1050
28	***************************************		<u> </u>	RU	<u> </u>	M	<i>8</i> 1	7.7	<u> </u>	FLIT	7.4	Ty-	120

Sediment Load Date/Time: 11/7/14 Laboratory ID: Tetra Tech Test#: Tt 04049 NOTAN OLLAVAN <u> Aracostia 11/5</u>/16 AS Organism Load Date/Time: 🚯 Sample ID: 10FR4 (ANAL 40 Client/Project: Test End Date/Time: Species: H. azteca Sediment Volume (mL): 100 016 Corresponding Control Test #: 「そいりつ 175 Organism Batch #: Water Volume (mL): 7 days Organism Age: Final Mean % Survival Replicate # Surviving Day X 100 # Exposed 5 6 7 8 9 10 11 12 10 10 10 10 0 10 10 10 10 90 9 9 42 10 10 10 Renewal Water Batch ID & Time Temp 00 YCT# Cond. (µS) Analyst Time Day (su) (°C) (mg/L)Renewal 1 Analyst Time Renewal 2 Analyst Time 1.45 229 76  $(\mathbb{K})$ 1205 29 886 AS 0845 886 853 30 853 1210 13 A 5 1245 **8**86 7.6 22. <u>27.</u>0 MH 31 SX (YY IDIT HGH223 32 836 NW) 1145 1900 886 1534 853 ୫୫୯ QQ.3 33 0815 8,9 0335 <u>88</u>6 A.S. lisis 854 NWS aa V A s 34 886 КИ-8 B 6 854 1050 1530 35 887 887 8TY 342 aro /56b 1.5 1030 36 487 Ly 06-50 22.8 6.8 ช ซา 05 4· The 0553 (18 37 /da F.Sct 5.5 6.8 215 XX 11149 620 38 22,2 39 687 F288 7.6 0930 854 5.5 BH 04/5 BH 41.5 04.}5 854 6.6 40 רממ 1515 BH 4. L. OB 1852 2 363 2218 41 88 1530 NH 7.5 1540 42 310 227 7.5

	S	ex Ratio	per Rep	licate a	nd#of	Young/	'Female	3
Day	5	6	7	8	9	10	11	12
Males	3	2	6	. 3	2_	4-	4	4
Females		5	3	7	٦	4	5	6
Young/ Female	<b>3</b> 3	6.0	り。そ	4.3	3,0	l.B	٧.۵	Чρ

Day

Total

42 18

5

6

13

2

Offspring per Replicate



10

9

11

12

7

Survival

Day 35

10

**##**834

29

10

Day 28

ъ

10

Rep

6

7

 $\frac{11}{12}$ 

Water Volume (mL):

Organism Age: 7 days

Organism Batch #:

016

Corresponding Control Test #: 17-0405

- Ar-1		AAAAAAAAAAA			gannAfrafan/irannaggg	00000000000000000	
	į.	80	n E wa E sa				Final Mean % Survival
Day	4	ne	olicate		Analyst	Time	# Surviving
	1	2	3	4			# Exposed X 100
0	10	10	10	10	<b>P</b> OH	f1000000.,	725
28	8	10	<b>?</b> )	W	V\$	2010000gs	77(3

	(	Эау
Parameters	0	28
NH ₃ (mg/L)	17,36	INM
Alk (mg/L as CaCO ₃ )	60	60
Hard (mg/L as CaCO ₃ )	146	106
Analyst	17	TT
Time	1615	11572

	<b></b>		in I things an		dicionamento.	***************************************				Trans	1 00	***************************************	<b>T</b>
Day	Renewal 1	κenew Ληαίνει	/ai water Time	Batch ID & Tim Renewal, 2	e   Analyst	Time	YCT#	pH / (su)	Cand. (µS)	Temp (°C)	00 	Analyst	Time :
-1	5 05/2010/2010/2010/2010/2010/2010/2010/20	* 14 5 6 15 5 13 P	254362			\$ \$ \$ \$ \$ \$ \$ \$ \$	NA.	*****		1 1 1 1 1	MANA	Wby	
	<b>244.5</b> 5,77	7	0945		1005	KOO	<b>B</b> HK	7.4	1015	33.7	<u> </u>		1/4.
1	#Ø \$14	K	0 SYF	1335	ΜĹ	ISD ISD	CVC		18.12	233	<del>                                     </del>	177	1640
2		<del>gaga gaaran aaaaaaaaaaaaaaaaaaaaaaaaaaaa</del>	/030 /030	<u> </u>		£	845	ንብ		<b>B</b>	15.a	84	1200
3	774	W/Z	0745			- ()	845	Z **		33.4	-	100	•
4	777	KK.	04W	FF <b>X</b> -877	7	1545	1073 245	8.7.0		23.6 23.6	<u> 19.8</u>		13//
5	824		01W	<u>877</u>	2	1520	faritianninnum.	o,u			7.7	LAS CB	1237
б	877	KSO .	<u> </u>	877	4/2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>845</b> 845			23.9	8.6	ce ce	
7	<b>6</b> k	**************************************	, , , , , , , , , , , , , , , , , , ,	†*************************************					7.80	24.8	<b></b>	<b></b>	0125
<u>.</u> 8	277	IR	0900	%17 882	<u>as</u>	1700	845 545		698	17.3	2-1	<u> </u>	0938
9		<u>Ri</u>	0136 1030	<u> </u>	VW	1515 -17//-	\$	7,5		12,2 1),(	<u> </u>	8/4	1200
10	<del>{</del>	·····	L					L7 ( > 1		***************************************	goodgianootaatooo		1//06
11	222	<u>. A.</u>	0915	682		<u> </u>	<u>845</u>	<b>\</b> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		12/2	<u> </u>	RH	1018
3.1 3.12 ₄	882°		10 <u>70</u>	}	***************************************	u a Jj	845°	7:11		12		mideliani hadaaa	1250
13	<b>\$</b> ************************************	AS	0850	882	<u>A5</u>	1450	procession contra			22.0	7.0	<b>M</b> 3	1000
*********	222	<u> </u>	043 <u>a</u>	382		1540			525	2.4	45	II	1115
14 15	. <b>340</b> . %82	5	1170	***************************************		\$ <b>r</b>	842	7.8		33.77	7.3	I	1232
15 16	<del>}</del>		1 <b>6</b> 00			<u>Q</u> _	847 847	7.		22.9	8.0	<u>Q</u>	15/5
********	(81/2 (81/4		1912 1312	.,,		57 		8.\		21.4	8.3	S.	
17		<u>0,4</u> _	<u> 1310 -</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	********************	<u> </u>	84)			37.1	8.2	BH-	/330
18	<u> </u>	<i>G</i>	<u>0850</u>	862	As	1430	691	$\mu_i F_i$		22.0	Ŧ:E	(64	FOLL
19	8.6.3	A_A	<u>0839</u>	992	<u> </u>	1445			-	227	2:1-	<u>Æ</u>	1100
20	<u> </u>	<b>4.</b>	7915	<u> </u>	<u>A</u>	1600	947			21.1	<u>۸.۷</u>	<b>7</b>	1(30
21	<u> </u>	<u>As</u>	01145	<u> </u>	ЩΩ	LOU	χν <del>1</del>	7.6	336	22.0	8.4	AS	1020
22	224	<i>,</i> 63	ككتم	884	(80)	1540	BUT .				2.2	, A.S.	2055
23	854	<u> </u>	100		······································	<u></u>	Anna Carlotte Statement Company	2.6		44:4	7.8	15 <u>/4</u>	1255
24	834		كتينا	······································	**************************************		<u> </u>			772	4.3		1433
25	<u> </u>	<u>M</u>	<u> </u>	284	ወያሁ	1500	849	0.5		22.1	8.0	<u> (4)                                   </u>	1054
26	<u> </u>	MP	<u>0</u> 132	884	<u> As</u>	1500	9.4			<i>22</i> , 8	<u>v. 1</u>	13	0700
27	234	_A3	_ಾ ರಿ	<u> </u>	حش ا	ıζω	للكك			22.8	7.1	<u> </u>	1050
28	, <b>**</b> **********************************	······································	700	1559,1		(QD)	<u>801  </u>	7,4]	394	[22.31]	7.4	L.	11572>

A Ref Spilled - 3 organisms found + orplaced Water quality measurements will be taken upon the 1" renewal of the day on the "out" water.



Sediment Load Date/Time: Tetra Tech Test#: Tto9050 Laboratory ID: Nedela Netion Amecostia— 11/5/18 A 5 Organism Load Date/Time: Client/Project: Sample ID: Covtyol Test End Date/Time: Sediment Volume (mL): 100 Species: H. azteca THOUGH 175 Corresponding Control Test #: Organism Batch #: 016 Water Volume (mL): Organism Age: Final Mean % Survival Replicate # Surviving Day X 100 # Exposed 11 5 6 7 8 9 10 **\$12** 01, 10 10 10 10 10 10 0 10 81,25 9 10 10 42 Renewal Water Batch ID & Time Temp 00 YCT# Cond. (µS) Analyst Time Day Renewal 1 Analyst (su) (°C) (mg/L)Time Renewal 2 Analyst Time **2**20 (W 1205 29 7.0 AS 8 8% 338 0845 853 30 %<3 22.9 1245 1210 ŊΩ 31 NW 23.0 1104 800 Юſ RZZ 32 888 7.4 1)9W 886 As 1530 853 1145 886 91 08LS 33 223 0335 886 AS 1530 854 1145 34 886 1050 1530 954 KXKS 887 1000 7.5 35 ONO 339 23 AS 0 201 36 887 Tay OSO <u> </u>도작 22.8 £.~ 887 0450 OH 85417.5 6.9 88 1600 23.1 37 (1)0 1140 ブァペ 6. 38 487 7.6 39 0530 F88 854 Ī 887 B/F 0415 824 dd.5 BH 0435 40 887 1515 () A 854 BH 887 D. 41 1530 42 74 315  $\mathcal{E} \cdot \mathcal{F}'$ 1540 Offspring per Replicate Survival Day 6 10 11 12 Day 28 Day 35 Rep ď -0 Q12/17/18 AS 42 L 0 6 (0 7 Total ~] 8 9 Sex Ratio per Replicate and # of Young/Female 8 LQ5 Day 6 12 10 4 Males 4 11 ц Females ŧ Young/ 23 2,6

2,3

4,3

Female

3.0

3.8

Weighing Date (MMDDYYY): Lagring

S. Co. A.

Remarks

() 3 ....

N (°) T

Weight of boat

Replicate

Test Test

(<u>m</u>

End Date (MMDDYYY): 13/00/18

Control Test ID: 1204050

Š

Drying Temp.

Analyst: i

Start Date (MMDDYYY): Drying Time (HH:MM):

m				
	ج ش		34.0	
Dry Weight of foil	Total Dry Weight	Number	Mean Dry Weight	
and organisms	of organisms	of organisms	oforganisms	
20	, 33 (B)		(36)	
~ C O # 1	Ą	2	d S	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Š	9	える	Mirodon.
Š	÷	40	\$	
	57.5	9	≈ 0	
		***************************************		
	81-8-11			
				<u>.</u>
				Li.
	***	**************************************		
***	3	Ç	× 0 + 1	~~~
Z,	****		\$244	L
9	K	2	8	
**	J	Ç	87. O	
165.4	¥	2	Š	
3	Š	\$**\$**	Š	
* 3	9	φ	g	
0,0	<b>ර</b> ඊ	2	\$ `~	.00000000
\$ 5 5 ° C	1.5	V.	~ (	<b></b>
***	~ ? \$ \$	Ç	Ţ	
<b>7</b> .03	Ļ	€\$0	2	

**©** 

ග

 $\infty$ 

O

~~~

dens dess ئة ت 8

t t

ī

ഗ

শ্ব

ω | ~

3

X

N የሚ  $\alpha \circ$ 

K Ž

≪ | co

Blanks

0 [6

7

က္ဆ den. den.

100 mg

٥ ت

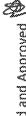
Replicates 1 - 4 are weighed after 28 day sediment exposure.

Ecological Testing Facility

Tetra Tech, Inc.

12 are weighted at the end of the 42-day test. Xepiicales o

Data Checked and Approved W


| Cilent WAMERS LINES   Color   Color   Weight of foil Total Dry Weight   Color   Weight of foil   Total Dry Weight   Color      |                                         | 150 BSO 350          | *************************************** | Start Date (MMDD<br>Drving Time (HH:N   |          |                                         | End Date (MMDDYYY): 12 (20) |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|-----------------------------------------|-----------------------------------------|----------|-----------------------------------------|-----------------------------|-----------------------------------------|
| Replicate   Weight of boat and organisms   Greganisms     | 2                                       | * 3                  |                                         | Client: Www.                            | 22 S     | *************************************** |                             |                                         |
| Replicate   Weight of boat   Total Dry Weight   C   Number   Mean Dry Weight   C   Number   Mean Dry Weight   C   Number   C   Number   C   Number   Numbe   |                                         |                      | *                                       | æ                                       | ۲<br>n   |                                         | (B-A)/C                     | *************************************** |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ç                                       | \$<br>\$<br>\$<br>\$ | %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  | Dry Weight of foil                      |          |                                         | Mean Dry Weight             | ,<br>,<br>,<br>,                        |
| 1187-9   1187-4   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1187-5   1   |                                         |                      |                                         | and organisms                           |          | of organisms                            | of organisms                |                                         |
| 1 (127-9 (135.4 5.7 9 0.6)  2 1134-9 (135.4 5.1 8.1 8.1 0.0)  3 1146.2 (153.2 6.1 10 0.6)  5 1150.7 152.2 5.0 7 0.0)  6 1134.3 1152.1 7.9 7 0.30  10 1152.1 7.9 6.3 9 0.30  11 1136.7 1144.4 1144.5 5.3 8 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 9 0.30  11 1146.7 1150.7 3.5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50  11 1146.7 1150.7 3.5 5 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                      | 20                                      | -<br>-<br>-<br>-                        | ja<br>E  |                                         | (B)                         |                                         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | <del>*</del>         | 5,1%                                    | 182                                     | K        | σ                                       | ,<br>0                      |                                         |
| 3   1145.3   1151.4   8.1   8   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01  |                                         | 7                    | 4                                       | 135                                     | 9,5      | <b>o</b>                                | 49.<br>0                    |                                         |
| 1146,2   1153,3   6.1   10   0.61     1131,2   4.3   4.5   4.5   4.5     1147,2   1153,1   4.5   4.5   4.5     1147,3   1153,1   4.5   4.5   6.1     1147,3   1153,1   4.5   4.5   6.1     1158,4   1153,4   5.5   4.5   6.1     1157,3   1145,1   6.8   4.5   6.3     1137,0   1137,1   5.4   4.5   6.3     1147,2   1145,1   5.4   4.5   6.3     1147,4   1150,2   4.4   4.5   6.1     1147,4   1150,5   4.4   4.5   6.1     1147,4   1150,5   4.4   4.5   6.1     1147,4   1150,5   4.4   5.1     1147,5   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1146,1   4.3   4.5   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   1145,1   5.1   6.1     1147,6   5.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1   6.1   6.1     1147,6   6.1     |                                         | m                    | 1145,3                                  | J<br>U                                  | Š        | So                                      | ō                           | 子<br>で<br>で<br>子                        |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000000                                | 4                    | 3                                       | 22                                      |          | 2                                       | \$<br>\$                    |                                         |
| 6     24,2     33,1   4,5   7   0.044   7     44\text{0.021}   150.6   6.7   19   0.47   8     46.3   150.6   6.7   4   0.49   10   150.4   165.9   165.9   6.3   9   0.49   11   150.7     144.0   6.8   9   0.49   12    40.7     44.0   6.8   9   0.19   13   174.0   174.4   3,4   9   0.19   14   171.4   170.5   144.1   5,7   9   0.19   15   144.4   147.1   5,7   9   0.19   16   171.4   160.7   a.8   5   0.19   17   144.4   147.5   144.1   5,0   18   144.4   147.5   146.1   4,0   11   141.8   146.1   4,0   11   141.8   146.1   4,0   11   141.8   146.1   4,0   11   141.8   146.1   4,0   11   141.8   145.1   5,0   11   141.8   145.1   5,0   11   141.8   145.1   5,0   145.1   5,0   145.1   4,0   11   141.8   145.1   5,0   145.1   5,0   145.1   4,0   5,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4,0   4, | 25,5                                    | ഗ                    | 1150,7                                  | 1155.0                                  | o        | <b>A</b>                                | 70                          |                                         |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | ග                    | 4 E                                     | 133.1                                   | r,       | 4                                       | 35.0                        |                                         |
| 8 (146.3 1,59.6 6,7 9 0,40 10 (159.4 6.8 9 0,46 11 (159.7 116.2 6,5 9 0,46 11 (159.7 116.2 6,5 9 0,76 12 (140.7 114.1 6.8 9 0,76 13 113.4 113.1 5,7 9 0,69 144.5 1160.7 2,4 8 0,69 1144.1 1144.5 1160.7 2,4 8 0,69 1144.1 1144.1 1144.3 144.9 9 0,174 110 (152.7 114.4 5.6 14.9 9 0,174 110 (152.7 114.1 4 114.3 14.3 14.9 9 0,174 110 (152.7 114.1 5.6 114.3 14.9 9 0,174 110 (152.7 114.1 5.6 114.3 14.9 9 0,174 111 (141.8 1146.1 4.3 14.9 9 0,174 112 (145.4 5.6 114.3 14.3 14.3 14.3 14.3 14.3 14.3 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ç                                       | L                    | 3                                       | 1152.1                                  | C, x     | 0                                       | 40                          |                                         |
| 9 (178,9 1167.2) \$.5 (\$,0.69   0.16   0.16   0.16   0.16   0.17   0.16   0.16   0.17   0.16   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17 |                                         | ထ                    | 22                                      |                                         | <u>(</u> | σ                                       | <u> </u>                    |                                         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | ത                    | 5                                       | C 231                                   | Š        | <u>~</u>                                | 53.0                        |                                         |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 2                    | ?                                       | <br>                                    | Y.9      | 6                                       | 9 F O                       |                                         |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | årer<br>årer         | £83                                     | 0 S S S S S S S S S S S S S S S S S S S | J: 9     | ς-                                      | r<br>O                      |                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 77                   | É                                       | S A S                                   | C. 38    | <b>∞</b>                                | \$ . \$ . \$                |                                         |
| 2     39, 7     143, 4   3,5   9   0,39   444, 4   3,4   3,4   9   0,36   444, 4   3,4   9   0,36   444, 4   1,50,5   4,4   9   0,56   1,50,5   4,4   9   0,56   1,50,5   4,4   9   1,44,4   1,44,5   1,50,5   4,4   9   1,44,4   1,44,5   1,50,5   4,4   9   1,44,4   1,44,5   1,45,4   5,4   1,0   0,50   1,50,5   1,46,1   4,3   7   0,40   1,50,5   1,46,1   4,3   7   0,50   1,46,1   4,3   4,3   7   0,50   1,46,1   4,3   1,46,1   4,3   1,46,1   4,3   1,46,1   4,3   1,46,1   4,3   1,46,1   4,3   1,46,1   1,46,1   4,3   1,46,1   1,46,1   4,3   1,46,1   1,46,1   4,3   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1   1,46,1 |                                         | ****                 | 137.3                                   |                                         | <u>ر</u> | σ                                       | 0, <del>1</del> %           |                                         |
| 3 1134,0 1134,4 3,4 9, 6,38 Aug 5 6,38 Aug 5 6,38 Aug 6 6,18 6 1140,7 a,14 8,4 6 6,18 8 1140,4 1140,4 1140,3 4,4 8 6,08 1140,4 1140,4 1140,3 4,4 8 6,00 1140,4 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140,1 1140 | W0000000000                             | 7                    | 1139,7                                  | 14%                                     | 2,5      | σ                                       | ري<br>و                     |                                         |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5000000000                              | n                    | 1340                                    | #<br>#<br>#                             | 7.0      | <b>5</b>                                | %<br>0                      | اس ک                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | **                   | 77                                      | 1,62                                    | そう       | <b>&gt;</b>                             | r<br>O                      |                                         |
| 6 1149, 164, 6 6, 4<br>8 1144, 9 1160, 3 6, 4<br>9 1144, 9 1144, 3 14, 9<br>10 152, 4 167, 5 4, 9<br>11 144, 9 1146, 4 5, 6<br>8 146, 9 1146, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | so                   | U<br>U                                  | : 3                                     | æ        | <b>΄</b>                                | 350                         |                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | Φ                    | S                                       | 150.5                                   | , C,     | <del>م</del>                            | 74                          |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 7                    | 4<br>5                                  | 24,6                                    | Ž        | ٰ                                       | F.                          |                                         |
| 10 1/41/4 1/45, 4/5 4/5 4/5 1/41/5 1/45, 4/5 4/5 4/5 4/5 4/5 4/5 4/5 4/5 4/5 4/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 00                   | J<br>J                                  | 1150. S                                 | ĭ        | 22                                      | 20                          | *************************************** |
| 10 (153.7 (167.5 4.8) \$ - 0<br>11 (141.8 (146.1 4.73 7 7<br>12 (147.8 (1145.4 57.6 N) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | တ                    |                                         | Z, &Z                                   | . S      | C.                                      | t                           |                                         |
| 11 146, 1 4, 2<br>12 1, 3, 9 1, 4 5, 4 5, 6 5<br>A 1, 3, 9 1, 4 5, 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | <b>\$</b>            | Ċ                                       | 1,52,5                                  | Ç        | - Ç~                                    | 9                           | ••••                                    |
| 12 1/39,6 1145,4 5,6 No P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | denor<br>denor       | 2                                       |                                         | Ţ        | p.                                      | 3                           |                                         |
| A 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 22                   | 139                                     | 145,4                                   | ?<br>V   | 2                                       | 2,70                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŭ                                       | <                    |                                         |                                         |          |                                         |                             |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                       | മ                    |                                         |                                         |          |                                         | omula kristono              |                                         |

Replicates 1 - 4 are weighed after 28 day sediment exposure.

Ecological Testing Facility

Tetra Tech, Inc.

Replicates 5 - 12 are weighted at the end of the 42-day test.

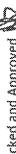


2014

Weight Data for H. azteca Survival, Growth, and Reproduction

Page 2 of land

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2010                          | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drying Time (HH:MM): AWK:              | M): 24           | *************************************** | End Date (MMDD/YY):<br>Weighing Date (MMDD) |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|
| Analyst: VSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client: MARSO NATES                    | Nated            | *************************************** |                                             |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                      | 8-A              |                                         | (B-A)(C                                     |                                         |
| <u>C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S<br>Specifical<br>Specifical | Soiot<br>Troiot<br>Troiot<br>Troiot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dry Weight of foil                     | Total Dry Weight | C<br>Ruther<br>reacht                   | Mean Dry Weight                             | 000000000000000000000000000000000000000 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and organisms                          | of organisms     | of organisms                            | of organisms                                | 2000                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | æ                                      | (BB)             |                                         | 66                                          |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ţ                             | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <===================================== | 8                | ٥                                       | ^ o                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                      | んべ               | مل                                      | ÷                                           | 8                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ന                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.<br>Ç                                | K                | 9                                       | Ĵ<br>Ġ                                      | #W. = 0, 23                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ţ                             | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 158.8                                  | ¥.               | ţ.                                      | 0 24                                        | ~                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ເກ                            | 0000000<br>1000000<br>1000000<br>1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                  | 0                                       | 5,5                                         | and the second                          |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | හ                             | ¥<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , c                                    | ¢                | ァ                                       |                                             |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                             | o<br>Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.3                                   | <b>~</b> 5       | ٠,                                      | 04.0                                        |                                         |
| \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ထ                             | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.33                                   | <i>a</i>         | ٢                                       |                                             |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O                             | j<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150.5                                  | . 9<br>~Y        | <b>.</b>                                | 3                                           |                                         |
| - Annaecon M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ç                             | σ<br>Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1157.0                                 | K                | . The                                   | 34.0                                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | skor<br>skor                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۳<br>ف<br>چ                            | , M              | 30gm                                    | \$<br>0                                     |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                            | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,20,1                                 | 5,6              | V                                       | 25.0                                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hoe                           | Z<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                      | <u> </u>         | <u>0</u>                                | ī, v                                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                             | 0.25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *<br>*                                 | Ĭ                | ð                                       | 42.0                                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                             | 149.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>2<br>2                            | **               | مسید<br>مصن                             | \$7.0                                       | AW. =0,29                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (32)                                   | 4                |                                         | 8                                           | . 8                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w                             | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | J.               | e                                       | 3                                           |                                         |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | တ                             | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 889                                    | Ţ                | ~~<                                     | J<br>O                                      |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             | occordor<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occordo<br>occo<br>occ | <u></u>                                | Ċ                | , 5                                     | 0.53                                        |                                         |
| STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE STANGE OF THE ST | ထ                             | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                               | <u>ተ</u>         | , 00°                                   | <b>5</b> 0                                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | တ                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9<br><b>3</b>                          | Ś                | <i>e</i> -                              | ġ                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ç                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 176.3                                  | A A              | ¢*                                      | 20                                          |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dan<br>dan                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                     | -<br>V           | şo                                      | Z                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72                            | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C. 33                                  | ļ                | -sassar<br>ggaratus                     | Ĭ,                                          |                                         |
| 2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ¥                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                  |                                         |                                             |                                         |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۵                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                  |                                         |                                             |                                         |


Replicates 1 - 4 are weighed after 28 day sediment exposure.

Ecological Testing Facility

Tetra Tech, Inc.

Replicates 5 - 12 are weighted at the end of the 42-day test.

Data Checked and Approved



| Control Test ID: 1604050                  | 60403        | ***************************************                                                     | Start Date (MMDDYYY): 1\\ \end{align*   \( \text{if } \)                                    |                  |                                         | End Date (MMDDYYY); @ po//® |                |
|-------------------------------------------|--------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|-----------------------------------------|-----------------------------|----------------|
| Drying Temp. 105<br>Analyst: 1885         | %            |                                                                                             | Uryang Isme (HH:MM): 24<br>Client: NAuAS. NARCON                                            | MM: 24k ·        | *************************************** | Weighing Date (MMD)         |                |
|                                           |              |                                                                                             |                                                                                             | :                |                                         |                             |                |
|                                           |              | <                                                                                           | Ø                                                                                           | ď                |                                         | (B-A)/C                     |                |
| \$<br>\$<br>\$                            | Osofina      | \                                                                                           | Dry Weight of foil                                                                          | Total Dry Weight | C Number                                | Mean Dry Weight             | Ş              |
| 3                                         |              |                                                                                             | and organisms                                                                               | of organisms     | of organisms                            | of organisms                |                |
|                                           |              | 20                                                                                          | Œ                                                                                           | æ                |                                         | 34                          |                |
|                                           | <b>2000</b>  |                                                                                             | 1155.0                                                                                      | Q<br>H           | Ş                                       | SSO                         |                |
|                                           | Z            | t Shi                                                                                       | o.<br>S                                                                                     | Ω<br>Ω           | 0                                       | <b>%</b>                    | 30° = 194      |
|                                           | m            | 4                                                                                           | Ø<br>7                                                                                      | V                |                                         | S                           | 0000.          |
|                                           | 4            | S                                                                                           | *                                                                                           | S                | ď                                       | Š                           |                |
| Ž.                                        | r            | 231                                                                                         | 1150, 1                                                                                     | S,               | _                                       | 09<br>C                     |                |
|                                           | ප            | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 7                                                                                           | ج-<br>م          | \$0                                     | Ť                           |                |
|                                           | £            | 25                                                                                          | e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e<br>e | 0                | ¢                                       | Ş                           |                |
| C. A. M. A. W. D. A.                      | ಐ            | o.<br>I                                                                                     | (                                                                                           | **               | er e                                    | 7                           |                |
|                                           | ත            | <u> </u>                                                                                    | 7.57.11                                                                                     | \$P              | 2                                       | 0.28                        |                |
|                                           | 10           | 3<br>5                                                                                      | \<br>\<br>\<br>\<br>\<br>\                                                                  | 9                | a-                                      | 5                           |                |
|                                           | Acco<br>Acco | đ<br>Ž                                                                                      |                                                                                             | くた               | 2000                                    | <b>7</b>                    |                |
|                                           | C            | 58                                                                                          | # # <b>*</b> * #                                                                            | 0,               | 8                                       | <b>4</b> 0                  |                |
|                                           | ₹~~          | )<br>V<br>                                                                                  | ď<br>Š                                                                                      | *******          | <b>&amp;</b>                            | 24.0                        |                |
|                                           | 7            |                                                                                             | C<br>Z                                                                                      | V                | (,                                      | 700000                      | Z007Z          |
| 200000000000000000000000000000000000000   | m            | £ \$ \$                                                                                     | C                                                                                           | 3.00             | (a)                                     | 400                         | <b>2000000</b> |
|                                           | 4            | )<br>33                                                                                     | i<br>S<br>S                                                                                 | ~ ~ ~ ~          | <b></b>                                 | ŝ                           |                |
| と言う                                       | ß            | T<br>K                                                                                      | , soort<br>See<br>, soort<br>, soort                                                        | ð,               |                                         | <b>*</b>                    |                |
| >                                         | Φ.           | Í                                                                                           | × × × × × ×                                                                                 | S,               | 2                                       | <b>\$</b> .                 |                |
|                                           | *            | V                                                                                           | ,923                                                                                        | Š                | \$                                      | Ķ                           |                |
| 7. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. | æ            | Š                                                                                           | 3<br><u>3</u>                                                                               |                  | Ş                                       | <b>S</b>                    |                |

Replicates 1 - 4 are weighed after 28 day sediment exposure.

Ecological Testing Facility

Tetra Tech, Inc.

Replicates 5 - 12 are weighted at the end of the 42-day test.

(S) 90 S O

> 2 €

و تر 4 b T

6.55 !

S Ç Ź

Ç £....

(J)

DUCK CONTROL

일<

Blanks

..... ~ % %





| Page Co                                        | 1   88   18. End Date (MMDDYYY): [A/A/P) | re: Weighing Date (MMDDYYY): 从A/A/// が | λ.                |
|------------------------------------------------|------------------------------------------|----------------------------------------|-------------------|
| vival, Growth, and Reproduction                | Start Date (MMDDYYY): N                  | Drying Time (HH:MM): Au r              | nt NAVARO NATES   |
| Weight Data for H. azteca Survival, Growth, an | Control Test ID: Tt 0\000                | Drying Temp: 100 %                     | Analyst: WAA Cile |

|             |                  | <                                                                                           | Ø                                                                                           | ٧-B                                                                    |               | 0.AKC                  |                                                                                                                     |
|-------------|------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|------------------------|---------------------------------------------------------------------------------------------------------------------|
| £           | ;<br>;<br>;<br>; | **************************************                                                      | Dry Weight of foil                                                                          | Total Dry Weight                                                       | Tequina<br>O  | Number Mean Dry Weight | 0<br>8<br>0                                                                                                         |
|             |                  |                                                                                             | and organisms                                                                               | of organisms                                                           | of organisms  | of organisms           | ?<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ |
|             |                  | 20                                                                                          | - CO                                                                                        | , Ta                                                                   |               | Œ                      |                                                                                                                     |
|             | *~               | 20,021                                                                                      | <i>†</i>                                                                                    | <b>*</b> X                                                             | 9             | \$.°                   |                                                                                                                     |
|             | 7                | <b>K</b>                                                                                    |                                                                                             | er<br>rri                                                              | Ø             | Ş                      | 550 - Bd                                                                                                            |
|             | ಣ                | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ |                                                                                             | 8.8                                                                    | <u></u>       | 0,38                   | •••oc                                                                                                               |
|             | 4                | 1137.6                                                                                      | i,                                                                                          | 8                                                                      | σ             | 7.53                   |                                                                                                                     |
|             | w                |                                                                                             | , 10°, 10°, 10°, 10°, 10°, 10°, 10°, 10°                                                    | ¥,                                                                     | 0.            | 300                    |                                                                                                                     |
|             | 9                | 7                                                                                           | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 4                                                                      | C)            | S                      |                                                                                                                     |
|             | *                |                                                                                             | 1357.3                                                                                      | 5.5                                                                    | i,c           | Ž<br>O                 |                                                                                                                     |
| in Kara     | ထ                |                                                                                             | ^ **                                                                                        | ొ                                                                      | gen.          | ₹<br>0                 |                                                                                                                     |
| 7           | ೦೪               | 8.5                                                                                         | )<br>8                                                                                      | Ş                                                                      | <i>'</i>      | 85 °                   |                                                                                                                     |
|             | Ç                | 0, 2, 5                                                                                     |                                                                                             | Ţ                                                                      | 1225<br>12000 | Ja G                   |                                                                                                                     |
|             | den<br>den       |                                                                                             | o<br>ø                                                                                      | Ł                                                                      | V             | 5                      |                                                                                                                     |
|             | 22               |                                                                                             | 167.3                                                                                       | < ; 9                                                                  | S             | 0,49                   |                                                                                                                     |
|             | ₹ecci            | (<br>기를                                                                                     | n Shi                                                                                       | そだ                                                                     | **            | ž õ                    |                                                                                                                     |
|             | 7                | <u>ج</u><br>م                                                                               |                                                                                             | J,                                                                     | w             | 9<br>0                 | X<br>0<br>3<br>4<br>4                                                                                               |
|             | m                | Ť                                                                                           | V                                                                                           | **                                                                     | 8             | X, O                   | ~~                                                                                                                  |
|             | **               |                                                                                             | <u>~</u>                                                                                    | Š                                                                      | ×             | \<br>\<br>\<br>\       |                                                                                                                     |
| Š.          | Š                |                                                                                             |                                                                                             | J.                                                                     | ø             | Ş                      |                                                                                                                     |
| +<br>5      | ٥                | io Wsfi                                                                                     | 180                                                                                         | . ~ ~                                                                  | .33           | (A)                    |                                                                                                                     |
| )<br>}      | Y                |                                                                                             | ,<br>,                                                                                      | <b>%</b>                                                               | *             | <b>3</b>               |                                                                                                                     |
| 1           | 8                | ### <b>3</b> 4                                                                              | , 'Q'                                                                                       | S'h                                                                    | \$¢0          | ħ£.O                   |                                                                                                                     |
|             | 5                |                                                                                             | 7,0                                                                                         | r,                                                                     | ೮             | Z<br>Š                 |                                                                                                                     |
|             | 27               |                                                                                             | ***                                                                                         | 200<br>200<br>30<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2 | \$            | G) (C                  |                                                                                                                     |
|             |                  |                                                                                             | 150,0                                                                                       | Y                                                                      | <b>₩</b>      | 55°0                   |                                                                                                                     |
|             | 2                |                                                                                             |                                                                                             | £'}                                                                    | ₽             | たなの                    |                                                                                                                     |
| a           | ∢                |                                                                                             |                                                                                             |                                                                        |               |                        |                                                                                                                     |
| n<br>E<br>T | α                | 5000cc                                                                                      |                                                                                             |                                                                        |               |                        |                                                                                                                     |

Replicates 1 - 4 are weighed after 28 day sediment exposure.

ED\_004888\_00000097-00412

Ecological Testing Facility

Tetra Tech, Inc.

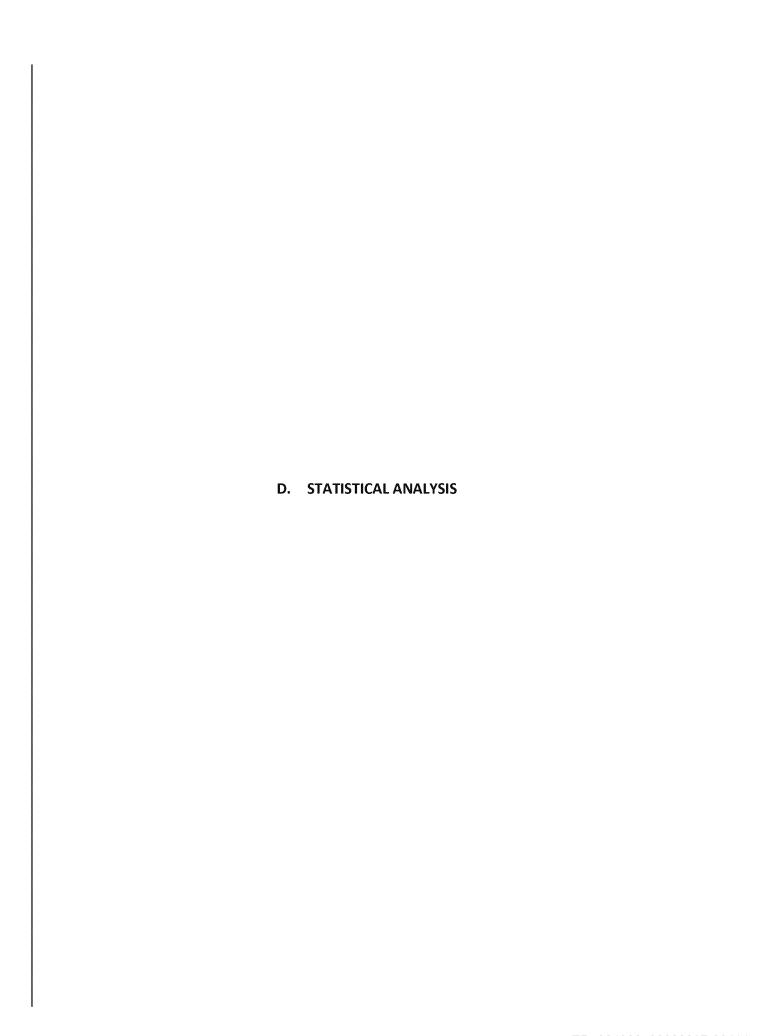
Replicates 5 - 12 are weighted at the end of the 42-day test.





| Control Test ID:                        | 7 040%                                  | *************************************** | Start Date (MMDDYYY):<br>Drving Time (HHMM): 3 | M. 34 M.         | *************************************** | End Date (MMDDYYY): \a  20/16<br>Weighing Date (MMDDYYY): | MDD WY:                                                   |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------|------------------|-----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| <b>***</b>                              | 2<br>2                                  | *************************************** | Client: NAMED                                  | · R motive       | *************************************** |                                                           | ***************************************                   |
|                                         |                                         | «                                       | a                                              | 8-8              |                                         | (B-A)(C                                                   |                                                           |
| C<br>t                                  | 000000000000000000000000000000000000000 | ž<br>Ž<br>Ž                             | Dy Weight of foil                              | Total Dry Weight |                                         | Number Mean Dry Weight                                    | , , , , , , , , , , , , , , , , , , ,                     |
| 3                                       |                                         |                                         | and organisms                                  | of organisms     | of organisms                            | of organisms                                              |                                                           |
|                                         |                                         | 39<br>31<br>31                          | (mg)                                           | (am)             |                                         | (mg)                                                      |                                                           |
| 3                                       | ~~                                      | 35                                      | ٥<br>څ<br>ا                                    | ゟ゙゙゙゙゙゙゙゙゙゙゙゙゙   | <u></u>                                 | ر<br>ا                                                    |                                                           |
|                                         | 2                                       | <b>7</b>                                | 005                                            | ٥                | 0                                       | 30.                                                       |                                                           |
| bocooood                                | ന                                       | <u> </u>                                | 0                                              | S,C              | ð                                       | 390                                                       | \$ 0 0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ |
| nooccood                                | Ą                                       | 9                                       | V                                              | δ <u>.</u>       | 5                                       | 900<br>900<br>900<br>900                                  | ~                                                         |
| d                                       | ហ                                       | 4651                                    | 65.5                                           | ٥.               | _                                       | <u>ه</u>                                                  |                                                           |
|                                         | 9                                       | 0                                       | 163,3                                          | 8:3              | J                                       | đ                                                         | 0000000                                                   |
| )                                       | Å                                       | `\$'`<br>`````                          | 136.2                                          | کرہ              | *                                       | 4.0                                                       |                                                           |
| 000000000                               | ဆ                                       | (36)<br>(36)                            | 11321                                          | *                | σ                                       | 39.0                                                      | 0000000                                                   |
|                                         | S                                       | 802                                     |                                                | ŗţ               | σ                                       | to                                                        |                                                           |
|                                         | <b>Ç</b>                                | 3.t9                                    | 1173,3                                         | Ž                | -¢<                                     | 8                                                         |                                                           |
| 238283388                               | door<br>Arre                            | 183                                     | 13.4                                           | 9                | , C                                     | 0,43                                                      |                                                           |
|                                         | 2                                       | \<br>2<br>2                             | 5.33                                           | ٥                | - \$                                    | 2                                                         |                                                           |
|                                         | good.                                   | ₹<br>\$<br>                             | S.                                             | Ţ                | r                                       | 3.0                                                       |                                                           |
|                                         | ~                                       | 3<br>8<br>=                             |                                                | ¥                | Œ                                       | 3                                                         | Au. 2 0, 66                                               |
|                                         | m                                       | 5                                       | 2.5%                                           | S                | S.                                      | ž                                                         |                                                           |
|                                         | #                                       | X ;                                     | S                                              | 4)<br>V          | ~                                       | 4                                                         |                                                           |
|                                         | ហ                                       | ~<br>Z                                  | ,<br>0                                         | Š                | ٥                                       | rg<br>O                                                   |                                                           |
|                                         | ထ                                       | 4                                       | <b></b>                                        | )<br>V           | \$                                      | 8                                                         |                                                           |
| 1000000000                              | 7                                       | 22                                      | 3,8                                            | ¢                | σ                                       | 3                                                         |                                                           |
| 3                                       | œ                                       | 2<br>2<br>2                             |                                                | ئة<br>لام        | . <b>C</b>                              | (g                                                        |                                                           |
|                                         | ന                                       | <br>V                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~         | 3.5              | .8                                      | ر<br>د                                                    |                                                           |
|                                         | 2                                       | J.                                      |                                                | Ţ                |                                         | 3                                                         |                                                           |
| 000000000000000000000000000000000000000 | door<br>door                            | くさう                                     |                                                | >-<br>\/:        | σ                                       | 0<br>0<br>0                                               | 0000000                                                   |
|                                         | 12                                      | C.E.                                    |                                                | <b>で</b> ご       | . 2                                     | 250                                                       |                                                           |
| 0<br>2<br>0                             | ζ.                                      |                                         |                                                |                  |                                         |                                                           |                                                           |
| 2                                       | æ                                       | <b>500000000</b>                        |                                                | 300000000        | 00000000                                | T'y                                                       | 9000000                                                   |
| ,                                       |                                         |                                         |                                                |                  |                                         |                                                           |                                                           |

Replicates 1 - 4 are weighed after 28 day sediment exposure.


Ecological Testing Facility

Tetra Tech, inc.

Replicates 5 - 12 are weighted at the end of the 42-day test.



2014



# Hyalella azteca

|              | Duncan test | ; Variable: 28 | 3-d Survival | (Spreadshee | et1)Marked o | differences a | re significan | t at p < .050 | 00       |          |          |
|--------------|-------------|----------------|--------------|-------------|--------------|---------------|---------------|---------------|----------|----------|----------|
| Site ID      | 02SANJUA    | 02SANJUA       | 10SANJUAI    | 10HOGBAC    | 10SANJUA     | 06CHACOR      | 10HOGBAC      | 07MANCOS      | 10FRUCAN | 10FRUCAN | CONTROL  |
| 02SANJUANR07 |             | 0.635687       |              | 0.584661    | 0.305945     | 0.300361      | 0.898826      | 0.061747      | 0.891320 | 0.807554 | 0.414955 |
| 02SANJUANR06 | 0.635687    |                |              | 0.350389    | 0.163072     | 0.523848      | 0.702579      | 0.136522      | 0.714635 | 0.784645 | 0.681848 |
| 10SANJUANR38 |             |                |              |             |              |               |               |               |          |          |          |
| 10HOGBACKC43 | 0.584661    | 0.350389       |              |             | 0.584661     | 0.134505      | 0.541355      |               | 0.523848 | 0.476006 | 0.202704 |
| 10SANJUANR26 | 0.305945    | 0.163072       |              | 0.584661    |              |               | 0.281789      |               | 0.268022 | 0.240451 | 0.081403 |
| 06CHACORIV04 | 0.300361    | 0.523848       |              | 0.134505    |              |               | 0.339931      | 0.338802      | 0.350389 | 0.390982 | 0.784645 |
| 10HOGBACKC44 | 0.898826    | 0.702579       |              | 0.541355    | 0.281789     | 0.339931      |               | 0.072649      | 1.000000 | 0.891320 | 0.462944 |
| 07MANCOSRI01 | 0.061747    | 0.136522       |              |             |              | 0.338802      | 0.072649      |               | 0.077367 | 0.088668 | 0.248669 |
| 10FRUCANAL45 | 0.891320    | 0.714635       |              | 0.523848    | 0.268022     | 0.350389      | 1.000000      | 0.077367      |          | 0.898826 | 0.476006 |
| 10FRUCANAL40 | 0.807554    | 0.784645       |              | 0.476006    | 0.240451     | 0.390982      | 0.891320      | 0.088668      | 0.898826 |          | 0.523848 |
| CONTROL      | 0.414955    | 0.681848       |              | 0.202704    | 0.081403     | 0.784645      | 0.462944      | 0.248669      | 0.476006 | 0.523848 |          |

|              | Duncan test; Variable: 28-d Survivor Weight (Spreadsheet1)Marked differences are significant at p < .05000 |          |           |          |          |          |          |          |          |          |          |  |  |
|--------------|------------------------------------------------------------------------------------------------------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| Site ID      | 02SANJUAI                                                                                                  | 02SANJUA | 10SANJUAI | 10HOGBAC | 10SANJUA | 06CHACOF | 10HOGBAC | 07MANCOS | 10FRUCAN | 10FRUCAN | CONTROL  |  |  |
| 02SANJUANR07 |                                                                                                            | 0.313737 |           |          | 0.495741 | 0.375879 | 0.086796 |          | 0.391158 | 0.706929 |          |  |  |
| 02SANJUANR06 | 0.313737                                                                                                   |          | 0.143031  | 0.091870 | 0.697645 | 0.074844 | 0.406806 | 0.144471 | 0.082352 | 0.488334 | 0.160680 |  |  |
| 10SANJUANR38 |                                                                                                            | 0.143031 |           | 0.762059 | 0.076720 |          | 0.457363 | 0.975182 |          |          | 0.903500 |  |  |
| 10HOGBACKC43 |                                                                                                            | 0.091870 | 0.762059  |          |          |          | 0.324493 | 0.770535 |          |          | 0.687884 |  |  |
| 10SANJUANR26 | 0.495741                                                                                                   | 0.697645 | 0.076720  |          |          | 0.140865 | 0.253609 | 0.076981 | 0.152480 | 0.725790 | 0.088760 |  |  |
| 06CHACORIV04 | 0.375879                                                                                                   | 0.074844 |           |          | 0.140865 |          |          |          | 0.932826 | 0.232988 |          |  |  |
| 10HOGBACKC44 | 0.086796                                                                                                   | 0.406806 | 0.457363  | 0.324493 | 0.253609 |          |          | 0.456049 |          | 0.156581 | 0.502651 |  |  |
| 07MANCOSRI01 |                                                                                                            | 0.144471 | 0.975182  | 0.770535 | 0.076981 |          | 0.456049 |          |          |          | 0.886597 |  |  |
| 10FRUCANAL45 | 0.391158                                                                                                   | 0.082352 |           |          | 0.152480 | 0.932826 |          |          |          | 0.247547 |          |  |  |
| 10FRUCANAL40 | 0.706929                                                                                                   | 0.488334 |           |          | 0.725790 | 0.232988 | 0.156581 |          | 0.247547 |          |          |  |  |
| CONTROL      |                                                                                                            | 0.160680 | 0.903500  | 0.687884 | 0.088760 |          | 0.502651 | 0.886597 |          |          |          |  |  |

|              | Duncan test; Variable: 28-d Originial Weight (Spreadsheet1)Marked differences are significant at p < .05000 |           |          |          |          |          |          |          |          |          |          |
|--------------|-------------------------------------------------------------------------------------------------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Site ID      | 02SANJUAI                                                                                                   | 02SANJUAI | 10SANJUA | 10HOGBAC | 10SANJUA | 06CHACOR | 10HOGBAC | 07MANCOS | 10FRUCAN | 10FRUCAN | CONTROL  |
| 02SANJUANR07 |                                                                                                             | 0.222631  |          |          | 0.582873 | 0.163736 | 0.071591 |          | 0.154844 | 0.214714 |          |
| 02SANJUANR06 | 0.222631                                                                                                    |           |          | 0.117110 | 0.452417 | 0.818726 | 0.491956 | 0.083343 |          | 0.981791 |          |
| 10SANJUANR38 |                                                                                                             |           |          | 0.589990 |          | 0.068571 | 0.157769 | 0.730945 |          |          | 0.963511 |
| 10HOGBACKC43 |                                                                                                             | 0.117110  | 0.589990 |          |          | 0.158716 | 0.316579 | 0.818726 |          | 0.120568 | 0.606046 |
| 10SANJUANR26 | 0.582873                                                                                                    | 0.452417  |          |          |          | 0.351568 | 0.176190 |          | 0.064801 | 0.437611 |          |
| 06CHACORIV04 | 0.163736                                                                                                    | 0.818726  | 0.068571 | 0.158716 | 0.351568 |          | 0.614533 | 0.117110 |          | 0.813177 | 0.070147 |
| 10HOGBACKC44 | 0.071591                                                                                                    | 0.491956  | 0.157769 | 0.316579 | 0.176190 | 0.614533 |          | 0.247656 |          | 0.494142 | 0.160364 |
| 07MANCOSRI01 |                                                                                                             | 0.083343  | 0.730945 | 0.818726 |          | 0.117110 | 0.247656 |          |          | 0.084790 | 0.748377 |
| 10FRUCANAL45 | 0.154844                                                                                                    |           |          |          | 0.064801 |          |          |          |          |          |          |
| 10FRUCANAL40 | 0.214714                                                                                                    | 0.981791  |          | 0.120568 | 0.437611 | 0.813177 | 0.494142 | 0.084790 |          |          |          |
| CONTROL      |                                                                                                             |           | 0.963511 | 0.606046 |          | 0.070147 | 0.160364 | 0.748377 |          |          |          |

|              | Duncan test | ; Variable: 35 | 5-d Survival | (Spreadshee | et1)Marked d | ifferences a | re significan | tatp < .050 | 00       |          |          |
|--------------|-------------|----------------|--------------|-------------|--------------|--------------|---------------|-------------|----------|----------|----------|
| Site ID      | 02SANJUA    | 02SANJUAI      | 10SANJUAI    | 10HOGBAC    | 10SANJUA     | 06CHACOR     | 10HOGBAC      | 07MANCOS    | 10FRUCAN | 10FRUCAN | CONTROL  |
| 02SANJUANR07 |             | 0.410077       |              | 0.714235    | 0.864416     | 0.410077     | 0.732289      |             | 0.422401 | 1.000000 | 0.344201 |
| 02SANJUANR06 | 0.410077    |                |              | 0.607646    | 0.344201     | 0.117251     | 0.582960      | 0.185691    | 1.000000 | 0.422401 | 0.864416 |
| 10SANJUANR38 |             |                |              |             |              |              |               |             |          |          |          |
| 10HOGBACKC43 | 0.714235    | 0.607646       |              |             | 0.621861     | 0.259924     | 1.000000      | 0.079626    | 0.621861 | 0.732289 | 0.521544 |
| 10SANJUANR26 | 0.864416    | 0.344201       |              | 0.621861    |              | 0.464455     | 0.631128      |             | 0.351134 | 0.854715 | 0.281381 |
| 06CHACORIV04 | 0.410077    | 0.117251       |              | 0.259924    | 0.464455     |              | 0.268998      |             | 0.121565 | 0.391658 | 0.090805 |
| 10HOGBACKC44 | 0.732289    | 0.582960       |              | 1.000000    | 0.631128     | 0.268998     |               | 0.074192    | 0.607646 | 0.742638 | 0.510359 |
| 07MANCOSRI01 |             | 0.185691       |              | 0.079626    |              |              | 0.074192      |             | 0.169718 |          | 0.202054 |
| 10FRUCANAL45 | 0.422401    | 1.000000       |              | 0.621861    | 0.351134     | 0.121565     | 0.607646      | 0.169718    |          | 0.431212 | 0.854715 |
| 10FRUCANAL40 | 1.000000    | 0.422401       |              | 0.732289    | 0.854715     | 0.391658     | 0.742638      |             | 0.431212 |          | 0.351134 |
| CONTROL      | 0.344201    | 0.864416       |              | 0.521544    | 0.281381     | 0.090805     | 0.510359      | 0.202054    | 0.854715 | 0.351134 |          |

|              | Duncan test; Variable: 42-d Survival (Spreadsheet1)Marked differences are significant at p < .05000 |                 |             |             |          |          |          |          |          |          |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|----------|----------|----------|----------|----------|----------|--|--|--|
| Site ID      | C2SANJUA                                                                                            | 02SANJUAI 10SAN | JUAI 10HOGB | AC10SANJUA  | 06CHACOF | 10HOGBAC | 07MANCOS | 10FRUCAN | 10FRUCAN | CONTROL  |  |  |  |
| 02SANJUANR07 |                                                                                                     | 0.397945        | 0.8509      | 32 0.736187 | 0.322483 | 0.850982 |          | 0.482195 | 0.860926 | 0.322483 |  |  |  |
| 02SANJUANR06 | 0.397945                                                                                            |                 | 0.4821      | 95 0.263488 | 0.079533 | 0.322483 | 0.217914 | 0.850982 | 0.331675 | 0.850982 |  |  |  |
| 10SANJUANR38 |                                                                                                     |                 |             |             |          |          |          |          |          |          |  |  |  |
| 10HOGBACKC43 | 0.850982                                                                                            | 0.482195        |             | 0.622259    | 0.256587 | 0.725594 | 0.066788 | 0.573222 | 0.736187 | 0.397945 |  |  |  |
| 10SANJUANR26 | 0.736187                                                                                            | 0.263488        | 0.6222      | 59          | 0.452966 | 0.860926 |          | 0.331675 | 0.850982 | 0.205589 |  |  |  |
| 06CHACORIV04 | 0.322483                                                                                            | 0.079533        | 0.2565      | 37 0.452966 |          | 0.397945 |          | 0.107782 | 0.379430 | 0.057419 |  |  |  |
| 10HOGBACKC44 | 0.850982                                                                                            | 0.322483        | 0.7255      | 94 0.860926 | 0.397945 |          |          | 0.397945 | 1.000000 | 0.256587 |  |  |  |
| 07MANCOSRI01 |                                                                                                     | 0.217914        | 0.0667      | 38          |          |          |          | 0.174361 |          | 0.261320 |  |  |  |
| 10FRUCANAL45 | 0.482195                                                                                            | 0.850982        | 0.5732      | 22 0.331675 | 0.107782 | 0.397945 | 0.174361 |          | 0.410364 | 0.725594 |  |  |  |
| 10FRUCANAL40 | 0.860926                                                                                            | 0.331675        | 0.7361      | 37 0.850982 | 0.379430 | 1.000000 |          | 0.410364 |          | 0.263488 |  |  |  |
| CONTROL      | 0.322483                                                                                            | 0.850982        | 0.3979      | 45 0.205589 | 0.057419 | 0.256587 | 0.261320 | 0.725594 | 0.263488 |          |  |  |  |

|              | Duncan test; Variable: 42-d Survivor Weight (Spreadsheet1)Marked differences are significant at p < .05000 |           |           |          |          |          |          |          |          |          |          |
|--------------|------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Site ID      | 02SANJUAI                                                                                                  | 02SANJUAI | 10SANJUAI | 10HOGBAC | 10SANJUA | 06CHACOR | 10HOGBAC | 07MANCOS | 10FRUCAN | 10FRUCAN | CONTROL  |
| 02SANJUANR07 |                                                                                                            |           | 0.946189  |          | 0.384052 |          | 0.161426 |          | 0.714882 |          |          |
| 02SANJUANR06 |                                                                                                            |           |           | 0.966323 |          | 0.075637 |          | 0.178143 |          | 0.207973 | 0.068216 |
| 10SANJUANR38 | 0.946189                                                                                                   |           |           |          | 0.399979 |          | 0.169312 |          | 0.746336 |          |          |
| 10HOGBACKC43 |                                                                                                            | 0.966323  |           |          |          | 0.072210 |          | 0.165636 |          | 0.220682 | 0.067444 |
| 10SANJUANR26 | 0.384052                                                                                                   |           | 0.399979  |          |          |          | 0.534951 |          | 0.564769 | 0.145729 |          |
| 06CHACORIV04 |                                                                                                            | 0.075637  |           | 0.072210 |          |          |          | 0.602614 |          |          | 0.921462 |
| 10HOGBACKC44 | 0.161426                                                                                                   |           | 0.169312  |          | 0.534951 |          |          |          | 0.262276 | 0.353175 |          |
| 07MANCOSRI01 |                                                                                                            | 0.178143  |           | 0.165636 |          | 0.602614 |          |          |          |          | 0.562514 |
| 10FRUCANAL45 | 0.714882                                                                                                   |           | 0.746336  |          | 0.564769 |          | 0.262276 |          |          | 0.053107 |          |
| 10FRUCANAL40 |                                                                                                            | 0.207973  |           | 0.220682 | 0.145729 |          | 0.353175 | 100      | 0.053107 |          |          |
| CONTROL      |                                                                                                            | 0.068216  |           | 0.067444 |          | 0.921462 |          | 0.562514 |          |          |          |

|              | Duncan test | t; Variable: 42 | -d Originial | Weight (Sp | readsheet1) | Marked differ | ences are s | ignificant at | p < .05000 |          |          |
|--------------|-------------|-----------------|--------------|------------|-------------|---------------|-------------|---------------|------------|----------|----------|
| Site ID      | 02SANJUAI   | 02SANJUAI       | 10SANJUAI    | 10HOGBAC   | 10SANJUA    | 06CHACOR      | 10HOGBAC    | 07MANCOS      | 10FRUCAN   | 10FRUCA  | CONTROL  |
| 02SANJUANR07 |             |                 |              |            | 0.607536    |               | 0.148392    |               | 0.099388   |          |          |
| 02SANJUANR06 |             |                 |              | 0.477337   |             | 0.874389      |             |               |            |          |          |
| 10SANJUANR38 |             |                 |              |            |             |               |             |               |            |          |          |
| 10HOGBACKC43 |             | 0.477337        |              |            |             | 0.415982      |             |               |            |          |          |
| 10SANJUANR26 | 0.607536    |                 |              |            |             |               | 0.305516    |               | 0.221759   |          |          |
| 06CHACORIV04 |             | 0.874389        |              | 0.415982   |             |               |             |               |            |          |          |
| 10HOGBACKG44 | 0.148392    |                 |              |            | 0.305516    |               |             |               | 0.782044   | 0.283187 |          |
| 07MANCOSRI01 |             |                 |              |            |             |               |             |               |            |          | 0.635409 |
| 10FRUCANAL45 | 0.099388    |                 |              |            | 0.221759    |               | 0.782044    |               |            | 0.385524 |          |
| 10FRUCANAL40 |             |                 |              |            |             |               | 0.283187    |               | 0.385524   |          |          |
| CONTROL      |             |                 |              |            |             |               |             | 0.635409      |            |          |          |

|              | Duncan test; Variable: Young/Female (Spreadsheet1)Marked differences are significant at p < .05000 |           |          |          |          |          |          |          |          |          |          |  |  |
|--------------|----------------------------------------------------------------------------------------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| Site ID      | 02SANJUAI                                                                                          | 02SANJUAI | 10SANJUA | 10HOGBAC | 10SANJUA | 06CHACOR | 10HOGBAC | 07MANCOS | 10FRUCAN | 10FRUCAN | CONTROL  |  |  |
| 02SANJUANR07 |                                                                                                    |           | 0.144180 |          | 0.150008 |          | 0.118358 |          | 0.153635 |          |          |  |  |
| 02SANJUANR06 |                                                                                                    |           | 0.075515 | 0.235648 |          | 0.672896 | 0.098214 | 0.630585 | 0.062358 | 0.511644 | 0.562046 |  |  |
| 10SANJUANR38 | 0.144180                                                                                           | 0.075515  |          | 0.499673 |          | 0.153577 | 0.867275 |          | 0.902998 | 0.226513 | 0.201739 |  |  |
| 10HOGBACKC43 |                                                                                                    | 0.235648  | 0.499673 |          |          | 0.404636 | 0.579280 | 0.112301 | 0.447949 | 0.536740 | 0.495901 |  |  |
| 10SANJUANR26 | 0.150008                                                                                           |           |          |          |          |          |          |          |          |          |          |  |  |
| 06CHACORIV04 |                                                                                                    | 0.672896  | 0.153577 | 0.404636 |          |          | 0.192161 | 0.398033 | 0.130325 | 0.773697 | 0.843062 |  |  |
| 10HOGBACKC44 | 0.118358                                                                                           | 0.098214  | 0.867275 | 0.579280 |          | 0.192161 |          |          | 0.787284 | 0.272049 | 0.247165 |  |  |
| 07MANCOSRI01 |                                                                                                    | 0.630585  |          | 0.112301 |          | 0.398033 |          |          |          | 0.287360 | 0.321148 |  |  |
| 10FRUCANAL45 | 0.153635                                                                                           | 0.062358  | 0.902998 | 0.447949 |          | 0.130325 | 0.787284 |          |          | 0.197993 | 0.173867 |  |  |
| 10FRUCANAL40 |                                                                                                    | 0.511644  | 0.226513 | 0.536740 |          | 0.773697 | 0.272049 | 0.287360 | 0.197993 |          | 0.912458 |  |  |
| CONTROL      |                                                                                                    | 0.562046  | 0.201739 | 0.495901 |          | 0.843062 | 0.247165 | 0.321148 | 0.173867 | 0.912458 |          |  |  |

# Cucurbita pepo

|             | Duncan test; Variable: % Germination (Squash Toxicity_20190105.sta)Marked differences are significant at p < .05000 |             |             |             |            |            |            |             |            |             |             |
|-------------|---------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|------------|------------|------------|-------------|------------|-------------|-------------|
| Site ID     | Control                                                                                                             | Soil-295-01 | Soil-200-02 | Soil-200-01 | Soil-TP-01 | Soil-FR-01 | Soil-AS-01 | Soil-295-02 | Soil-AV-01 | Soil-270-01 | Soil-157-01 |
| Control     |                                                                                                                     |             | 0.761244    |             |            |            |            | 0.745500    |            |             | 0.516910    |
| Soil-295-01 |                                                                                                                     |             |             | 1.000000    |            | 0.152650   | 0.761244   |             | 0.379705   | 0.332388    |             |
| Soil-200-02 | 0.761244                                                                                                            |             |             |             |            | 0.056371   |            | 1.000000    |            |             | 0.379705    |
| Soil-200-01 |                                                                                                                     | 1.000000    |             |             |            | 0.143055   | 0.745500   |             | 0.362092   | 0.362092    |             |
| Soil-TP-01  |                                                                                                                     |             |             |             |            |            |            |             |            |             | 0.109520    |
| Sail-FR-01  |                                                                                                                     | 0.152650    | 0.056371    | 0.143055    |            |            | 0.224690   | 0.069506    | 0.516910   |             |             |
| Soil-AS-01  |                                                                                                                     | 0.761244    |             | 0.745500    |            | 0.224690   |            |             | 0.516910   | 0.241405    |             |
| Soil-295-02 | 0.745500                                                                                                            |             | 1.000000    |             |            | 0.069506   |            |             |            |             | 0.362092    |
| Soil-AV-01  |                                                                                                                     | 0.379705    |             | 0.362092    |            | 0.516910   | 0.516910   |             |            | 0.085926    |             |
| Soil-270-01 |                                                                                                                     | 0.332388    |             | 0.362092    |            |            | 0.241405   |             | 0.085926   |             |             |
| Soil-157-01 | 0.516910                                                                                                            |             | 0.379705    |             | 0.109520   |            |            | 0.362092    |            |             |             |

|             | Duncan test | ; Variable: Avç | . Shoot Leng | th (mm) (Squ | uash Toxicity_ | _20190105.st | ta)Marked diff | erences are | significant at | p < .05000  |             |
|-------------|-------------|-----------------|--------------|--------------|----------------|--------------|----------------|-------------|----------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01     | Soil-200-02  | Soil-200-01  | Soil-TP-01     | Sail-FR-01   | Soil-AS-01     | Soil-295-02 | Soil-AV-01     | Soil-270-01 | Sail-157-01 |
| Control     |             |                 | 0.424783     |              | 0.512869       | 0.065725     | 0.422183       | 0.977252    | 0.265528       |             | 0.966949    |
| Sail-295-01 |             |                 | 0.090984     | 0.882887     |                | 0.525475     | 0.093777       |             | 0.162732       | 0.092644    |             |
| Soil-200-02 | 0.424783    | 0.090984        |              | 0.074778     | 0.170173       | 0.247149     | 0.978202       | 0.422828    | 0.704478       |             | 0.414777    |
| Soil-200-01 |             | 0.882887        | 0.074778     |              |                | 0.463397     | 0.075798       |             | 0.138628       | 0.102859    |             |
| Soil-TP-01  | 0.512869    |                 | 0.170173     |              |                |              | 0.170271       | 0.511748    | 0.093095       |             | 0.511663    |
| Sail-FR-01  | 0.065725    | 0.525475        | 0.247149     | 0.463397     |                |              | 0.253821       | 0.064837    | 0.392542       |             | 0.064038    |
| Soil-AS-01  | 0.422183    | 0.093777        | 0.978202     | 0.075798     | 0.170271       | 0.253821     |                | 0.408708    | 0.703264       |             | 0.417439    |
| Sail-295-02 | 0.977252    |                 | 0.422828     |              | 0.511748       | 0.064837     | 0.408708       |             | 0.264944       |             | 0.948287    |
| Soil-AV-01  | 0.265528    | 0.162732        | 0.704478     | 0.138628     | 0.093095       | 0.392542     | 0.703264       | 0.264944    |                |             | 0.258294    |
| Sail-270-01 |             | 0.092644        |              | 0.102859     |                |              |                |             |                |             |             |
| Soil-157-01 | 0.966949    |                 | 0.414777     |              | 0.511663       | 0.064038     | 0.417439       | 0.948287    | 0.258294       |             |             |

|             | Duncan test | ; Variable: Avg | . Root Lengt | n (mm) (Squa | ash Toxicity_2 | 20190105.sta | a)Marked diffe | rences are s | ignificant at p | < .05000    |             |
|-------------|-------------|-----------------|--------------|--------------|----------------|--------------|----------------|--------------|-----------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01     | Soil-200-02  | Sail-200-01  | Soil-TP-01     | Soil-FR-01   | Soil-AS-01     | Soil-295-02  | Soil-AV-01      | Soil-270-01 | Soil-157-01 |
| Control     |             |                 |              |              | 0.129559       |              |                | 0.446614     |                 |             |             |
| Soil-295-01 |             |                 | 0.084995     | 0.792003     |                | 0.831222     | 0.114493       |              | 0.806664        |             | 0.056725    |
| Soil-200-02 |             | 0.084995        |              | 0.057424     | 0.377478       | 0.061263     | 0.827178       | 0.103737     | 0.120214        |             | 0.801503    |
| Soil-200-01 |             | 0.792003        | 0.057424     |              |                | 0.945284     | 0.081986       |              | 0.635043        |             |             |
| Soil-TP-01  | 0.129559    |                 | 0.377478     |              |                |              | 0.294799       | 0.391345     |                 |             | 0.490090    |
| Soil-FR-01  |             | 0.831222        | 0.061263     | 0.945284     |                |              | 0.085845       |              | 0.668127        | 0.052170    |             |
| Soil-AS-01  |             | 0.114493        | 0.827178     | 0.081986     | 0.294799       | 0.085845     |                | 0.074657     | 0.152660        |             | 0.660064    |
| Soil-295-02 | 0.446614    |                 | 0.103737     |              | 0.391345       |              | 0.074657       |              |                 |             | 0.147170    |
| Soil-AV-01  |             | 0.806664        | 0.120214     | 0.635043     |                | 0.668127     | 0.152660       |              |                 |             | 0.083913    |
| Soil-270-01 |             |                 |              |              |                | 0.052170     |                |              |                 |             |             |
| Soil-157-01 |             | 0.056725        | 0.801503     |              | 0.490090       |              | 0.660064       | 0.147170     | 0.083913        |             |             |

|             | Duncan test; Variable: Mean Dry Weight (mg) (Squash Toxicity_20190107.sta)Marked differences are significant at p < .05000  Control   Squit 295-01   Squit 200-02   Squit 200-01   Squit FR-01   Squit FR-01   Squit AS-01   Squit 295-02   Squit AV-01   Squit 270-01   Squit 157-01 |             |             |             |            |            |            |             |            |             |             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|------------|------------|------------|-------------|------------|-------------|-------------|
| Site ID     | Control                                                                                                                                                                                                                                                                               | Sail-295-01 | Soil-200-02 | Soil-200-01 | Soil-TP-01 | Soil-FR-01 | Soil-AS-01 | Soil-295-02 | Soil-AV-01 | Soil-270-01 | Soil-157-01 |
| Control     |                                                                                                                                                                                                                                                                                       | 0.462800    | 0.648345    |             | 0.539143   | 0.240442   | 0.729915   | 0.252251    | 0.847624   |             | 0.565868    |
| Soil-295-01 | 0.462800                                                                                                                                                                                                                                                                              |             | 0.742792    | 0.172766    | 0.202762   | 0.602193   | 0.663031   | 0.075020    | 0.562665   |             | 0.222483    |
| Soil-200-02 | 0.648345                                                                                                                                                                                                                                                                              | 0.742792    |             | 0.106878    | 0.314532   | 0.426263   | 0.890959   | 0.129120    | 0.769072   |             | 0.341277    |
| Soil-200-01 |                                                                                                                                                                                                                                                                                       | 0.172766    | 0.106878    |             |            | 0.350616   | 0.089817   |             | 0.068564   | 0.327714    |             |
| Sail-TP-01  | 0.539143                                                                                                                                                                                                                                                                              | 0.202762    | 0.314532    |             |            | 0.088613   | 0.366959   | 0.540384    | 0.444290   |             | 0.935464    |
| Soil-FR-01  | 0.240442                                                                                                                                                                                                                                                                              | 0.602193    | 0.426263    | 0.350616    | 0.088613   |            | 0.373250   |             | 0.305488   | 0.073463    | 0.098721    |
| Sail-AS-01  | 0.729915                                                                                                                                                                                                                                                                              | 0.663031    | 0.890959    | 0.089817    | 0.366959   | 0.373250   |            | 0.156049    | 0.859847   |             | 0.394656    |
| Soil-295-02 | 0.252251                                                                                                                                                                                                                                                                              | 0.075020    | 0.129120    |             | 0.540384   |            | 0.156049   |             | 0.198018   |             | 0.515726    |
| Soil-AV-01  | 0.847624                                                                                                                                                                                                                                                                              | 0.562665    | 0.769072    | 0.068564    | 0.444290   | 0.305488   | 0.859847   | 0.198018    |            |             | 0.472702    |
| Soil-270-01 |                                                                                                                                                                                                                                                                                       |             |             | 0.327714    |            | 0.073463   |            |             |            |             |             |
| Soil-157-01 | 0.565868                                                                                                                                                                                                                                                                              | 0.222483    | 0.341277    |             | 0.935464   | 0.098721   | 0.394656   | 0.515726    | 0.472702   |             |             |

|             | Duncan test | t; Variable: Me | an Root Wei | ght (mg) (Squ | uash Toxicity_ | 20190105.s | ta)Marked dif | ferences are | significant at | p < .05000  |             |
|-------------|-------------|-----------------|-------------|---------------|----------------|------------|---------------|--------------|----------------|-------------|-------------|
| Site ID     | Control     | Soll-295-01     | Soil-200-02 | Sail-200-01   | Soil-TP-01     | Sail-FR-01 | Soil-AS-01    | Soil-295-02  | Soll-AV-01     | Soil-270-01 | Soil-157-01 |
| Control     |             | 0.369355        | 0.189952    | 0.123742      | 0.490295       | 0.635524   | 0.498049      | 0.792922     | 0.587795       |             | 0.739522    |
| Soil-295-01 | 0.369355    |                 | 0.616662    | 0.461767      | 0.800462       | 0.638527   | 0.795481      | 0.495556     | 0.689015       | 0.142538    | 0.542046    |
| Soil-200-02 | 0.189952    | 0.616662        |             | 0.775533      | 0.480425       | 0.370262   | 0.482936      | 0.271693     | 0.405501       | 0.292903    | 0.302699    |
| Soil-200-01 | 0.123742    | 0.461767        | 0.775533    |               | 0.348707       | 0.259077   | 0.349278      | 0.183626     | 0.286971       | 0.403000    | 0.206998    |
| Soil-TP-01  | 0.490295    | 0.800462        | 0.480425    | 0.348707      |                | 0.800132   | 0.980746      | 0.637941     | 0.858099       | 0.097808    | 0.691213    |
| Soil-FR-01  | 0.635524    | 0.638527        | 0.370262    | 0.259077      | 0.800132       |            | 0.809743      | 0.805434     | 0.928078       | 0.067458    | 0.864542    |
| Soil-AS-01  | 0.498049    | 0.795481        | 0.482936    | 0.349278      | 0.980746       | 0.809743   |               | 0.647173     | 0.867361       | 0.099264    | 0.699737    |
| Soil-295-02 | 0.792922    | 0.495556        | 0.271693    | 0.183626      | 0.637941       | 0.805434   | 0.647173      |              | 0.750173       |             | 0.926202    |
| Soil-AV-01  | 0.587795    | 0.689015        | 0.405501    | 0.286971      | 0.858099       | 0.928078   | 0.867361      | 0.750173     |                | 0.076673    | 0.807145    |
| Sail-270-01 |             | 0.142538        | 0.292903    | 0.403000      | 0.097808       | 0.067458   | 0.099264      |              | 0.076673       |             | 0.050360    |
| Soil-157-01 | 0.739522    | 0.542046        | 0.302699    | 0.206998      | 0.691213       | 0.864542   | 0.699737      | 0.926202     | 0.807145       | 0.050360    |             |

|             | Duncan test | ; Variable: Me | an Shoot We | ight (mg) (Sc | uash Toxicity | _20190107. | sta)Marked di | fferences are | significant a | t p < .05000 |             |
|-------------|-------------|----------------|-------------|---------------|---------------|------------|---------------|---------------|---------------|--------------|-------------|
| Site ID     | Control     | Soil-295-01    | Soil-200-02 | Sail-200-01   | Soil-TP-01    | Soil-FR-01 | Soil-AS-01    | Soil-295-02   | Soil-AV-01    | Soil-270-01  | Sail-157-01 |
| Control     |             | 0.633439       | 0.670315    | 0.099470      | 0.132538      | 0.110498   | 0.960329      | 0.081929      | 0.852735      |              | 0.278859    |
| Soil-295-01 | 0.633439    |                | 0.403177    | 0.201396      | 0.058194      | 0.227067   | 0.621613      |               | 0.542242      |              | 0.139302    |
| Soil-200-02 | 0.670315    | 0.403177       |             | 0.052296      | 0.237150      | 0.055101   | 0.692458      | 0.158884      | 0.784326      |              | 0.450053    |
| Soil-200-01 | 0.099470    | 0.201396       | 0.052296    |               |               | 0.997684   | 0.101403      |               | 0.083310      | 0.211626     |             |
| Soil-TP-01  | 0.132538    | 0.058194       | 0.237150    |               |               |            | 0.137233      | 0.766217      | 0.165290      |              | 0.612527    |
| Soil-FR-01  | 0.110498    | 0.227067       | 0.055101    | 0.997684      |               |            | 0.108907      |               | 0.088175      | 0.186648     |             |
| Soil-AS-01  | 0.960329    | 0.621613       | 0.692458    | 0.101403      | 0.137233      | 0.108907   |               | 0.085570      | 0.881814      |              | 0.287199    |
| Soil-295-02 | 0.081929    |                | 0.158884    |               | 0.766217      |            | 0.085570      |               | 0.105776      |              | 0.451508    |
| Soil-AV-01  | 0.852735    | 0.542242       | 0.784326    | 0.083310      | 0.165290      | 0.088175   | 0.881814      | 0.105776      |               |              | 0.334663    |
| Soil-270-01 |             |                |             | 0.211626      |               | 0.186648   |               |               |               |              |             |
| Soil-157-01 | 0.278859    | 0.139302       | 0.450053    |               | 0.612527      |            | 0.287199      | 0.451508      | 0.334663      |              |             |

#### Cucumis melo

|             | Duncan test | ; Variable: % | Germination | (Melon Toxic | ity_20190105 | sta)Marked | differences a | re significant | at p < .05000 | )           |             |
|-------------|-------------|---------------|-------------|--------------|--------------|------------|---------------|----------------|---------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01   | Soil-200-02 | Sail-200-01  | Soil-TP-01   | Soil-FR-01 | Soil-AS-01    | Soil-295-02    | Soil-AV-01    | Soil-270-01 | Sail-157-01 |
| Control     |             | 0.542131      | 0.551902    | 1.000000     | 0.735390     |            | 0.380162      | 0.751697       |               |             |             |
| Soil-295-01 | 0.542131    |               | 1.000000    | 0.526790     | 0.372009     | 0.073719   | 0.751697      | 0.735390       |               |             | 0.127288    |
| Soil-200-02 | 0.551902    | 1.000000      |             | 0.542131     | 0.380162     | 0.067328   | 0.735390      | 0.751697       |               |             | 0.114647    |
| Soil-200-01 | 1.000000    | 0.526790      | 0.542131    |              | 0.751697     |            | 0.372009      | 0.735390       |               |             |             |
| Soil-TP-01  | 0.735390    | 0.372009      | 0.380162    | 0.751697     |              |            | 0.247836      | 0.542131       |               |             |             |
| Soil-FR-01  |             | 0.073719      | 0.067328    |              |              |            | 0.114647      |                |               |             | 0.735390    |
| Soil-AS-01  | 0.380162    | 0.751697      | 0.735390    | 0.372009     | 0.247836     | 0.114647   |               | 0.542131       |               |             | 0.180514    |
| Soil-295-02 | 0.751697    | 0.735390      | 0.751697    | 0.735390     | 0.542131     |            | 0.542131      |                |               |             | 0.073719    |
| Soil-AV-01  |             |               |             |              |              |            |               |                |               | 0.499857    |             |
| Soil-270-01 |             |               |             |              |              |            |               |                | 0.499857      |             |             |
| Soil-157-01 |             | 0.127288      | 0.114647    |              |              | 0.735390   | 0.180514      | 0.073719       |               |             |             |

|             | Duncan test | ; Variable: Avg | g. Shoot Leng | th (mm) (Mel | on Toxicity_2 | 0190105.sta | )Marked diffe | rences are si | gnificant at p | < .05000    |             |
|-------------|-------------|-----------------|---------------|--------------|---------------|-------------|---------------|---------------|----------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01     | Soil-200-02   | Soil-200-01  | Soil-TP-01    | Soil-FR-01  | Soil-AS-01    | Soil-295-02   | Soil-AV-01     | Soil-270-01 | Soil-157-01 |
| Control     |             | 0.577674        | 0.446249      | 0.678127     | 0.681710      | 0.372207    | 0.383536      | 0.428072      | 0.296900       |             | 0.390792    |
| Soil-295-01 | 0.577674    |                 | 0.804225      | 0.849984     | 0.857564      | 0.702178    | 0.717831      | 0.780136      | 0.141986       |             | 0.727692    |
| Soil-200-02 | 0.446249    | 0.804225        |               | 0.684928     | 0.689048      | 0.866500    | 0.884423      | 0.959892      | 0.097138       |             | 0.897073    |
| Soil-200-01 | 0.678127    | 0.849984        | 0.684928      |              | 0.981892      | 0.585438    | 0.600385      | 0.659876      | 0.171269       |             | 0.610708    |
| Soil-TP-01  | 0.681710    | 0.857564        | 0.689048      | 0.981892     |               | 0.594727    | 0.609372      | 0.666753      | 0.179739       |             | 0.618565    |
| Soil-FR-01  | 0.372207    | 0.702178        | 0.866500      | 0.585438     | 0.594727      |             | 0.974273      | 0.897699      | 0.078579       |             | 0.958226    |
| Soil-AS-01  | 0.383536    | 0.717831        | 0.884423      | 0.600385     | 0.609372      | 0.974273    |               | 0.915942      | 0.081116       |             | 0.980132    |
| Soil-295-02 | 0.428072    | 0.780136        | 0.959892      | 0.659876     | 0.666753      | 0.897699    | 0.915942      |               | 0.092871       |             | 0.929698    |
| Soil-AV-01  | 0.296900    | 0.141986        | 0.097138      | 0.171269     | 0.179739      | 0.078579    | 0.081116      | 0.092871      |                | 0.088647    | 0.082219    |
| Soil-270-01 |             |                 |               |              |               |             |               |               | 0.088647       |             |             |
| Sail-157-01 | 0.390792    | 0.727692        | 0.897073      | 0.610708     | 0.618565      | 0.958226    | 0.980132      | 0.929698      | 0.082219       |             |             |

|             | Duncan test | ; Variable: Avç | g. Root Lengt | h (mm) (Melo | on Toxicity_20 | )190105.sta)l | Marked differe | ences are sig | nificant at p < | .05000      |             |
|-------------|-------------|-----------------|---------------|--------------|----------------|---------------|----------------|---------------|-----------------|-------------|-------------|
| Site ID     | Control     | Soll-295-01     | Soil-200-02   | Soil-200-01  | Soil-TP-01     | Sail-FR-01    | Sail-AS-01     | Soil-295-02   | Soil-AV-01      | Soil-270-01 | Soil-157-01 |
| Control     |             | 0.319478        | 0.845614      | 0.165451     | 0.460881       | 0.183886      | 0.278074       | 0.258869      |                 |             |             |
| Soil-295-01 | 0.319478    |                 | 0.256152      |              | 0.745392       | 0.677311      | 0.889971       |               |                 |             |             |
| Soil-200-02 | 0.845614    | 0.256152        |               | 0.209455     | 0.382081       | 0.140143      | 0.218497       | 0.313790      |                 |             |             |
| Soil-200-01 | 0.165451    |                 | 0.209455      |              |                |               |                | 0.741399      |                 |             |             |
| Soil-TP-01  | 0.460881    | 0.745392        | 0.382081      |              |                | 0.487876      | 0.664548       | 0.079105      |                 |             |             |
| Sail-FR-01  | 0.183886    | 0.677311        | 0.140143      |              | 0.487876       |               | 0.759567       |               |                 |             | 0.086260    |
| Soil-AS-01  | 0.278074    | 0.889971        | 0.218497      |              | 0.664548       | 0.759567      |                |               |                 |             | 0.056276    |
| Sail-295-02 | 0.258869    |                 | 0.313790      | 0.741399     | 0.079105       |               |                |               |                 |             |             |
| Soil-AV-01  |             |                 |               |              |                |               |                |               |                 | 0.417209    | 0.216824    |
| Sail-270-01 |             |                 |               |              |                |               |                |               | 0.417209        |             | 0.612355    |
| Soil-157-01 |             |                 |               |              |                | 0.086260      | 0.056276       |               | 0.216824        | 0.612355    |             |

|             | Duncan tes | t; Variable: N | /lean Dry W | eight (mg) (N | Aelon Toxici | ty_20190107 | .sta)Marked | differences a | are significar | nt at p < .05 | 000         |
|-------------|------------|----------------|-------------|---------------|--------------|-------------|-------------|---------------|----------------|---------------|-------------|
| Site ID     | Control    | Soil-295-01    | Soil-200-02 | Sail-200-01   | Soil-TP-01   | Soil-FR-01  | Soil-AS-01  | Soil-295-02   | Soil-AV-01     | Soil-270-01   | Sail-157-01 |
| Control     |            | 0.692855       | 0.779535    | 0.557814      | 0.675620     | 0.528017    | 0.528732    | 0.347533      | 0.063458       | 0.528749      | 0.459017    |
| Soil-295-01 | 0.692855   |                | 0.887159    | 0.819301      | 0.966246     | 0.781985    | 0.782378    | 0.552564      | 0.126977       | 0.783929      | 0.697534    |
| Soil-200-02 | 0.779535   | 0.887159       |             | 0.728000      | 0.863199     | 0.692944    | 0.693154    | 0.478073      | 0.102276       | 0.693399      | 0.612442    |
| Soil-200-01 | 0.557814   | 0.819301       | 0.728000    |               | 0.840088     | 0.949485    | 0.947537    | 0.692929      | 0.178473       | 0.946067      | 0.853959    |
| Soil-TP-01  | 0.675620   | 0.966246       | 0.863199    | 0.840088      |              | 0.804051    | 0.806187    | 0.573459      | 0.132884       | 0.807764      | 0.720418    |
| Soil-FR-01  | 0.528017   | 0.781985       | 0.692944    | 0.949485      | 0.804051     |             | 0.993893    | 0.729489      | 0.190863       | 0.989741      | 0.893774    |
| Soil-AS-01  | 0.528732   | 0.782378       | 0.693154    | 0.947537      | 0.806187     | 0.993893    |             | 0.727761      | 0.185516       | 0.994488      | 0.893501    |
| Soil-295-02 | 0.347533   | 0.552564       | 0.478073    | 0.692929      | 0.573459     | 0.729489    | 0.727761    |               | 0.267267       | 0.722439      | 0.808050    |
| Soil-AV-01  | 0.063458   | 0.126977       | 0.102276    | 0.178473      | 0.132884     | 0.190863    | 0.185516    | 0.267267      |                | 0.177144      | 0.203819    |
| Soil-270-01 | 0.528749   | 0.783929       | 0.693399    | 0.946067      | 0.807764     | 0.989741    | 0.994488    | 0.722439      | 0.177144       |               | 0.891460    |
| Soil-157-01 | 0.459017   | 0.697534       | 0.612442    | 0.853959      | 0.720418     | 0.893774    | 0.893501    | 0.808050      | 0.203819       | 0.891460      |             |

|             | Duncan test | ; Variable: Me | an Root Wei | ght (mg) (Spr | eadsheet2)N | larked differe | nces are sign | nificant at p < | .05000     |             |             |
|-------------|-------------|----------------|-------------|---------------|-------------|----------------|---------------|-----------------|------------|-------------|-------------|
| Site ID     | Control     | Sail 295-01    | Sail-200-02 | Soil-200-01   | Soil-TP-01  | Soil FR-01     | Soil-AS-01    | Soil-295-02     | Soil-AV-01 | Sail 270-01 | Soil-157-01 |
| Control     |             | 0.614482       | 0.847123    | 0.541077      | 0.642273    | 0.664823       | 0.119703      | 0.118196        | 0.227907   | 0.448242    | 0.430599    |
| Soil-295-01 | 0.614482    |                | 0.732241    | 0.893433      | 0.954374    | 0.918451       | 0.264986      | 0.259902        | 0.447470   | 0.768402    | 0.747050    |
| Soil-200-02 | 0.847123    | 0.732241       |             | 0.651460      | 0.762762    | 0.787224       | 0.160149      | 0.158134        | 0.292740   | 0.548038    | 0.528303    |
| Soil-200-01 | 0.541077    | 0.893433       | 0.651460    |               | 0.858078    | 0.826646       | 0.311119      | 0.303953        | 0.510891   | 0.856632    | 0.833919    |
| Soil-TP-01  | 0.642273    | 0.954374       | 0.762762    | 0.858078      |             | 0.958120       | 0.249178      | 0.245515        | 0.425764   | 0.737590    | 0.715194    |
| Soil-FR-01  | 0.664823    | 0.918451       | 0.787224    | 0.826646      | 0.958120    |                | 0.234945      | 0.232277        | 0.405621   | 0.709240    | 0.686300    |
| Soil-AS-01  | 0.119703    | 0.264986       | 0.160149    | 0.311119      | 0.249178    | 0.234945       |               | 0.997934        | 0.679572   | 0.383694    | 0.393484    |
| Soil-295-02 | 0.118196    | 0.259902       | 0.158134    | 0.303953      | 0.245515    | 0.232277       | 0.997934      |                 | 0.661256   | 0.373410    | 0.377324    |
| Sail-AV-01  | 0.227907    | 0.447470       | 0.292740    | 0.510891      | 0.425764    | 0.405621       | 0.679572      | 0.661256        |            | 0.607609    | 0.613906    |
| Soil-270-01 | 0.448242    | 0.768402       | 0.548038    | 0.856632      | 0.737590    | 0.709240       | 0.383694      | 0.373410        | 0.607609   |             | 0.965377    |
| Sail-157-01 | 0.430599    | 0.747050       | 0.528303    | 0.833919      | 0.715194    | 0.686300       | 0.393484      | 0.377324        | 0.613906   | 0.965377    |             |

|             | Duncan test | t; Variable: Me | an Shoot We | ight (mg) (Sp | readsheet2) | Marked differ | ences are sig | gnificant at p | < .05000   |             |             |
|-------------|-------------|-----------------|-------------|---------------|-------------|---------------|---------------|----------------|------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01     | Soil-200-02 | Soil-200-01   | Soil-TP-01  | Soil-FR-01    | Soil-AS-01    | Soil-295-02    | Soil-AV-01 | Soil-270-01 | Sail-157-01 |
| Control     |             | 0.769987        | 0.810167    | 0.648477      | 0.743032    | 0.589192      | 0.730764      | 0.517003       | 0.107695   | 0.192278    | 0.554482    |
| Sail-295-01 | 0.769987    |                 | 0.942453    | 0.846854      | 0.958940    | 0.779016      | 0.941152      | 0.697717       | 0.171652   | 0.289907    | 0.740179    |
| Soil-200-02 | 0.810167    | 0.942453        |             | 0.802221      | 0.908176    | 0.736100      | 0.893217      | 0.655634       | 0.156132   | 0.266548    | 0.697751    |
| Soil-200-01 | 0.648477    | 0.846854        | 0.802221    |               | 0.878267    | 0.916516      | 0.892105      | 0.827216       | 0.221296   | 0.362338    | 0.873223    |
| Soil-TP-01  | 0.743032    | 0.958940        | 0.908176    | 0.878267      |             | 0.809167      | 0.977525      | 0.726801       | 0.182121   | 0.305606    | 0.769389    |
| Soil-FR-01  | 0.589192    | 0.779016        | 0.736100    | 0.916516      | 0.809167    |               | 0.821975      | 0.897408       | 0.249398   | 0.401635    | 0.947472    |
| Soil-AS-01  | 0.730764    | 0.941152        | 0.893217    | 0.892105      | 0.977525    | 0.821975      |               | 0.739964       | 0.185665   | 0.311053    | 0.782777    |
| Soil-295-02 | 0.517003    | 0.697717        | 0.655634    | 0.827216      | 0.726801    | 0.897408      | 0.739964      |                | 0.273905   | 0.429909    | 0.942411    |
| Soil-AV-01  | 0.107695    | 0.171652        | 0.156132    | 0.221296      | 0.182121    | 0.249398      | 0.185665      | 0.273905       |            | 0.705519    | 0.262544    |
| Soil-270-01 | 0.192278    | 0.289907        | 0.266548    | 0.362338      | 0.305606    | 0.401635      | 0.311053      | 0.429909       | 0.705519   |             | 0.418715    |
| Soil-157-01 | 0.554482    | 0.740179        | 0.697751    | 0.873223      | 0.769389    | 0.947472      | 0.782777      | 0.942411       | 0.262544   | 0.418715    |             |

# Zea mays

|             | Duncan test | ; Variable: % ( | Germination ( | Spreadsheet1 | )Marked differ | ences are sig | nificant at p < | .05000      |            |             |             |
|-------------|-------------|-----------------|---------------|--------------|----------------|---------------|-----------------|-------------|------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01     | Soil-200-02   | Soil-200-01  | Soil-TP-01     | Soil-FR-01    | Soil-AS-01      | Soil-295-02 | Soil-AV-01 | Soil-270-01 | Soil-157-01 |
| Control     |             |                 | 0.265030      | 0.680602     | 1.000000       | 0.146615      | 0.440706        | 0.717641    | 1.000000   |             | 0.710520    |
| Soil-295-01 |             |                 |               |              |                |               |                 |             |            | 1.000000    |             |
| Soil-200-02 | 0.265030    |                 |               | 0.440706     | 0.284873       | 0.680602      | 0.680602        | 0.163305    | 0.276603   |             | 0.159062    |
| Soil-200-01 | 0.680602    |                 | 0.440706      |              | 0.710520       | 0.265030      | 0.680602        | 0.476027    | 0.699781   |             | 0.468496    |
| Soil-TP-01  | 1.000000    |                 | 0.284873      | 0.710520     |                | 0.159062      | 0.468496        | 0.699781    | 1.000000   |             | 0.680602    |
| Soil-FR-01  | 0.146615    |                 | 0.680602      | 0.265030     | 0.159062       |               | 0.440706        | 0.083905    | 0.153653   |             | 0.081290    |
| Soil-AS-01  | 0.440706    |                 | 0.680602      | 0.680602     | 0.468496       | 0.440706      |                 | 0.290981    | 0.457574   |             | 0.284873    |
| Soil-295-02 | 0.717641    |                 | 0.163305      | 0.476027     | 0.699781       | 0.083905      | 0.290981        |             | 0.710520   |             | 1.000000    |
| Sail-AV-01  | 1.000000    |                 | 0.276603      | 0.699781     | 1.000000       | 0.153653      | 0.457574        | 0.710520    |            |             | 0.699781    |
| Sail-270-01 |             | 1.000000        |               |              |                |               |                 |             |            |             |             |
| Soil-157-01 | 0.710520    |                 | 0.159062      | 0.468496     | 0.680602       | 0.081290      | 0.284873        | 1.000000    | 0.699781   |             |             |

|             | Duncan test; | Variable: Avg. | Shoot Length | (mm) (Sprea | adsheet1)Mar | ked difference | s are signific | ant at p < .050 | 100        |             |             |
|-------------|--------------|----------------|--------------|-------------|--------------|----------------|----------------|-----------------|------------|-------------|-------------|
| Site ID     | Control      | Soil-295-01    | Soil-200-02  | Sail-200-01 | Soil-TP-01   | Soil-FR-01     | Soil-AS-01     | Soil-295-02     | Soil-AV-01 | Soil-270-01 | Soil-157-01 |
| Control     |              |                | 0.710680     | 0.459503    | 0.831345     | 0.771283       | 0.452290       | 0.390682        | 0.294305   |             | 0.133436    |
| Soil-295-01 |              |                |              |             | 0.055158     |                |                |                 | 0.252746   | 0.552399    |             |
| Soil-200-02 | 0.710680     |                |              | 0.671762    | 0.582846     | 0.916021       | 0.668215       | 0.591250        | 0.181340   |             | 0.231328    |
| Sail-200-01 | 0.459503     |                | 0.671762     |             | 0.363080     | 0.620106       | 0.973110       | 0.872515        | 0.092515   |             | 0.398997    |
| Soil-TP-01  | 0.831345     | 0.055158       | 0.582846     | 0.363080    |              | 0.637186       | 0.355802       | 0.303108        | 0.365781   |             | 0.095717    |
| Soll-FR-01  | 0.771283     |                | 0.916021     | 0.620106    | 0.637186     |                | 0.611627       | 0.537238        | 0.202767   |             | 0.204801    |
| Soil-AS-01  | 0.452290     |                | 0.668215     | 0.973110    | 0.355802     | 0.611627       |                | 0.890304        | 0.091164   |             | 0.398922    |
| Soil-295-02 | 0.390682     |                | 0.591250     | 0.872515    | 0.303108     | 0.537238       | 0.890304       |                 | 0.073629   |             | 0.446474    |
| Sail-AV-01  | 0.294305     | 0.252746       | 0.181340     | 0.092515    | 0.365781     | 0.202767       | 0.091164       | 0.073629        |            | 0.103169    |             |
| Soil-270-01 |              | 0.552399       |              |             |              |                |                |                 | 0.103169   |             |             |
| Soil-157-01 | 0.133436     |                | 0.231328     | 0.398997    | 0.095717     | 0.204801       | 0.398922       | 0.446474        |            |             |             |

|             | Duncan test; | Variable: Avg | . Root Length | (mm) (Spread | dsheet1)Marke | ed differences | are significa | nt at p < .0500 | 00         |             |             |
|-------------|--------------|---------------|---------------|--------------|---------------|----------------|---------------|-----------------|------------|-------------|-------------|
| Site ID     | Control      | Sail-295-01   | Soil-200-02   | Soil-200-01  | Soil-TP-01    | Soil-FR-01     | Sail-AS-01    | Soil-295-02     | Soil-AV-01 | Soil-270-01 | Soil-157-01 |
| Control     |              |               | 0.853715      | 0.192370     |               |                |               | 0.866233        |            |             |             |
| Soil-295-01 |              |               |               |              |               | 0.050697       |               |                 | 0.584917   | 0.326066    |             |
| Sail-200-02 | 0.853715     |               |               | 0.215851     |               |                |               | 0.977125        |            |             |             |
| Soil-200-01 | 0.192370     |               | 0.215851      |              | 0.068219      |                | 0.106441      | 0.232645        |            |             |             |
| Soil-TP-01  |              |               |               | 0.068219     |               | 0.170716       | 0.749683      |                 |            |             | 0.686523    |
| Soil-FR-01  |              | 0.050697      |               |              | 0.170716      |                | 0.107259      |                 | 0.130331   | 0.266902    | 0.290861    |
| Soil-AS-01  |              |               |               | 0.106441     | 0.749683      | 0.107259       |               |                 |            |             | 0.498581    |
| Sail-295-02 | 0.866233     |               | 0.977125      | 0.232645     |               |                |               |                 |            |             |             |
| Soil-AV-01  |              | 0.584917      |               |              |               | 0.130331       |               |                 |            | 0.615400    |             |
| Soil-270-01 |              | 0.326066      |               |              |               | 0.266902       |               |                 | 0.615400   |             |             |
| Soil-157-01 |              |               |               |              | 0.686523      | 0.290861       | 0.498581      |                 |            |             |             |

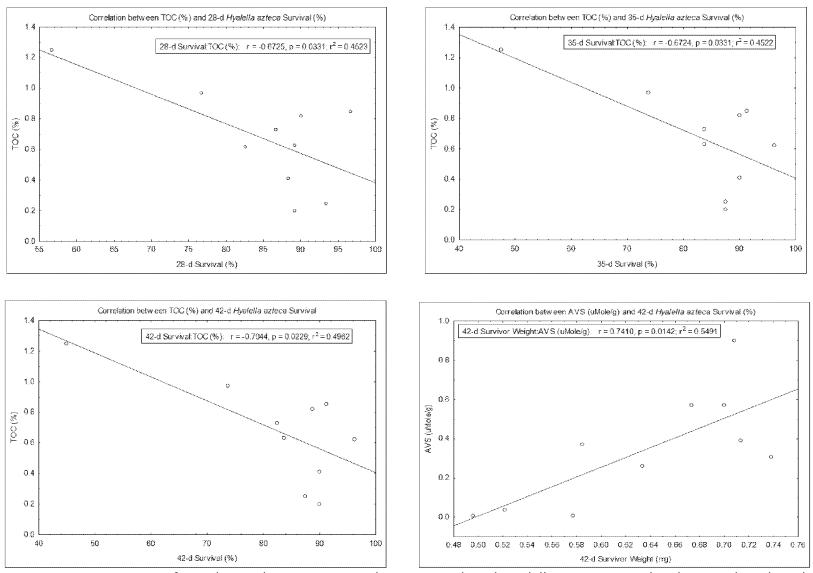
|             | Duncan test; | Variable: Mea | an Dry Weight | (mg) (Spread | lsheet1)Marke | ed differences | are significa | nt at p < .0500 | 10         |             |             |
|-------------|--------------|---------------|---------------|--------------|---------------|----------------|---------------|-----------------|------------|-------------|-------------|
| Site ID     | Control      | 801-295-01    | Soil-200-02   | Soil-200-01  | Soil-TP-01    | Soil-FR-01     | Soil-AS-01    | Soil-295-02     | Soll-AV-01 | Soil-270-01 | Soil-157-01 |
| Control     |              | 0.770826      | 0.487091      | 0.089233     | 0.758283      | 0.685137       | 0.095505      | 0.424638        |            | 0.716644    |             |
| Sail 295-01 | 0.770826     |               | 0.652726      | 0.142416     | 0.970207      | 0.879567       | 0.151399      | 0.578405        |            | 0.917258    |             |
| Soil-200-02 | 0.487091     | 0.652726      |               | 0.270470     | 0.668983      | 0.732708       | 0.275274      | 0.895835        | 0.091911   | 0.707829    |             |
| Soil-200-01 | 0.089233     | 0.142416      | 0.270470      |              | 0.147105      | 0.168450       | 0.956033      | 0.307567        | 0.490965   | 0.160142    |             |
| Soil-TP-01  | 0.758283     | 0.970207      | 0.668983      | 0.147105     |               | 0.901471       | 0.155330      | 0.594384        |            | 0.941010    |             |
| Soil-FR-01  | 0.685137     | 0.879567      | 0.732708      | 0.168450     | 0.901471      |                | 0.173666      | 0.658163        | 0.050652   | 0.953223    |             |
| Soil-AS-01  | 0.095505     | 0.151399      | 0.275274      | 0.956033     | 0.155330      | 0.173666       |               | 0.303091        | 0.485268   | 0.167497    |             |
| Sail-295-02 | 0.424638     | 0.578405      | 0.895835      | 0.307567     | 0.594384      | 0.658163       | 0.303091      |                 | 0.108112   | 0.632018    |             |
| Soil-AV-01  |              |               | 0.091911      | 0.490965     |               | 0.050652       | 0.485268      | 0.108112        |            |             | 0.125971    |
| Soil-270-01 | 0.716644     | 0.917258      | 0.707829      | 0.160142     | 0.941010      | 0.953223       | 0.167497      | 0.632018        |            |             |             |
| Soil-157-01 |              |               |               |              |               |                |               |                 | 0.125971   |             |             |

|             | Duncan test; | Variable: Mea | an Root Weigh | nt (mg) (Sprea | dsheet1)Mar | ked difference | s are signific | ant at p < .050 | 000        |             |            |
|-------------|--------------|---------------|---------------|----------------|-------------|----------------|----------------|-----------------|------------|-------------|------------|
| Site ID     | Control      | Sail-295-01   | Soil-200-02   | Soil-200-01    | Soil-TP-01  | Soil-FR-01     | Sail-AS-01     | Soil-295-02     | Soil-AV-01 | Soil-270-01 | Soil-157-0 |
| Sontrel     |              | 0.643800      | 0.633282      | 0.437799       | 0.396339    | 0.190104       | 0.736524       | 0.992647        | 0.824972   | 0.360941    |            |
| Soil-295-01 | 0.643800     |               | 0.971807      | 0.241090       | 0.660095    | 0.360320       | 0.874991       | 0.650180        | 0.520487   | 0.612546    |            |
| Sail-200-02 | 0.633282     | 0.971807      |               | 0.234964       | 0.664278    | 0.365326       | 0.856986       | 0.635815        | 0.507658   | 0.622149    |            |
| Soil-200-01 | 0.437799     | 0.241090      | 0.234964      |                | 0.122708    |                | 0.291949       | 0.425724        | 0.533347   | 0.107816    |            |
| Soil-TP-01  | 0.396339     | 0.660095      | 0.664278      | 0.122708       |             | 0.593954       | 0.571832       | 0.399840        | 0.305098   | 0.926675    |            |
| oil-FR-01   | 0.190104     | 0.360320      | 0.365326      |                | 0.593954    |                | 0.300416       | 0.191848        | 0.137514   | 0.633378    |            |
| ioil-AS-01  | 0.736524     | 0.874991      | 0.856986      | 0.291949       | 0.571832    | 0.300416       |                | 0.746143        | 0.605504   | 0.526879    |            |
| Gall-295-02 | 0.992647     | 0.650180      | 0.635815      | 0.425724       | 0.399840    | 0.191848       | 0.746143       |                 | 0.820365   | 0.362715    |            |
| Bail-AV-01  | 0.824972     | 0.520487      | 0.507658      | 0.533347       | 0.305098    | 0.137514       | 0.605504       | 0.820365        |            | 0.274115    |            |
| Scil-270-01 | 0.360941     | 0.612546      | 0.622149      | 0.107816       | 0.926675    | 0.633378       | 0.526879       | 0.362715        | 0.274115   |             |            |
| Soil-157-01 |              |               |               |                |             |                |                |                 |            |             |            |

|             | Duncan test | ; Variable: Mea | an Shoot Weig | ht (mg) (Spre | adsheet1)Ma | rked differenc | es are signifi | cant at p < .05 | 000        |             |             |
|-------------|-------------|-----------------|---------------|---------------|-------------|----------------|----------------|-----------------|------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01     | Soil-200-02   | Soil-200-01   | Soil-TP-01  | Soil-FR-01     | Soil-AS-01     | Soil-295-02     | Soil-AV-01 | Soil-270-01 | Soil-157-01 |
| Control     |             | 0.242778        | 0.093241      |               | 0.141829    | 0.065879       |                | 0.118888        |            | 0.123724    |             |
| Sail-295-01 | 0.242778    |                 | 0.503311      | 0.199751      | 0.691877    | 0.399828       | 0.050973       | 0.605262        |            | 0.607184    |             |
| Soil-200-02 | 0.093241    | 0.503311        |               | 0.488651      | 0.742996    | 0.831830       | 0.163751       | 0.845377        | 0.052576   | 0.849105    |             |
| Sell-200-01 |             | 0.199751        | 0.488651      |               | 0.339450    | 0.598331       | 0.422943       | 0.403922        | 0.172994   | 0.401610    | 0.160556    |
| Soil-TP-01  | 0.141829    | 0.691877        | 0.742996      | 0.339450      |             | 0.612137       | 0.102820       | 0.876389        |            | 0.871007    |             |
| Soil-FR-01  | 0.065879    | 0.399828        | 0.831830      | 0.598331      | 0.612137    |                | 0.213344       | 0.704448        | 0.073267   | 0.706220    | 0.066297    |
| Sail-AS-01  |             | 0.050973        | 0.163751      | 0.422943      | 0.102820    | 0.213344       |                | 0.129099        | 0.513565   | 0.126536    | 0.481762    |
| Soil-295-02 | 0.118888    | 0.605262        | 0.845377      | 0.403922      | 0.876389    | 0.704448       | 0.129099       |                 |            | 0.985521    |             |
| Soil-AV-01  |             |                 | 0.052576      | 0.172994      |             | 0.073267       | 0.513565       |                 |            |             | 0.922795    |
| Soil-270-01 | 0.123724    | 0.607184        | 0.849105      | 0.401610      | 0.871007    | 0.706220       | 0.126536       | 0.985521        |            |             |             |
| Soil-157-01 |             |                 |               | 0.160556      |             | 0.066297       | 0.481762       |                 | 0.922795   |             |             |

# Medicago sativa

|             | Duncan test | ; Variable: % | Germination | (Alfalfa Toxici | ty_20190105 | .sta)Marked | differences a | re significant | at p < .05000 | )           |             |
|-------------|-------------|---------------|-------------|-----------------|-------------|-------------|---------------|----------------|---------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01   | Soil-200-02 | Soil-200-01     | Soil-TP-01  | Soil-FR-01  | Soil-AS-01    | Soil-295-02    | Soil-AV-01    | Soil-270-01 | Soil-157-01 |
| Control     |             | 0.500320      | 0.331134    | 1.000000        | 0.815532    | 0.437290    | 0.241497      | 0.109138       | 1.000000      | 0.182958    | 0.821458    |
| Soil-295-01 | 0.500320    |               | 0.123991    | 0.493002        | 0.626787    | 0.182958    | 0.081217      |                | 0.482375      | 0.437290    | 0.603867    |
| Sail-200-02 | 0.331134    | 0.123991      |             | 0.348839        | 0.261073    | 0.795135    | 0.795135      | 0.465868       | 0.360526      |             | 0.267160    |
| Soil-200-01 | 1.000000    | 0.493002      | 0.348839    |                 | 0.808045    | 0.465868    | 0.252891      | 0.115311       | 1.000000      | 0.177307    | 0.815532    |
| Soil-TP-01  | 0.815532    | 0.626787      | 0.261073    | 0.808045        |             | 0.360526    | 0.182958      | 0.078643       | 0.795135      | 0.241497    | 1.000000    |
| Soil-FR-01  | 0.437290    | 0.182958      | 0.795135    | 0.465868        | 0.360526    |             | 0.626787      | 0.348839       | 0.482375      |             | 0.368719    |
| Soil-AS-01  | 0.241497    | 0.081217      | 0.795135    | 0.252891        | 0.182958    | 0.626787    |               | 0.603867       | 0.261073      |             | 0.187364    |
| Sail-295-02 | 0.109138    |               | 0.465868    | 0.115311        | 0.078643    | 0.348839    | 0.603867      |                | 0.120140      |             | 0.081217    |
| Soil-AV-01  | 1.000000    | 0.482375      | 0.360526    | 1.000000        | 0.795135    | 0.482375    | 0.261073      | 0.120140       |               | 0.169873    | 0.808045    |
| Sail-270-01 | 0.182958    | 0.437290      |             | 0.177307        | 0.241497    |             |               |                | 0.169873      |             | 0.224780    |
| Soil-157-01 | 0.821458    | 0.603867      | 0.267160    | 0.815532        | 1.000000    | 0.368719    | 0.187364      | 0.081217       | 0.808045      | 0.224780    |             |


|             | Duncan test | ; Variable: Avç | J. Shoot Leng | th (mm) (Alfa | Ifa Toxicity_2 | 0190105.sta | )Marked differ | ences are si | gnificant at p | < .05000    |             |
|-------------|-------------|-----------------|---------------|---------------|----------------|-------------|----------------|--------------|----------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01     | Soil-200-02   | Sail-200-01   | Soil-TP-01     | Soil-FR-01  | Soil-AS-01     | Soil-295-02  | Soil-AV-01     | Soil-270-01 | Sail-157-01 |
| Control     |             | 0.926069        | 0.302364      | 0.116545      | 0.702829       | 0.078466    |                |              | 0.679581       | 0.749601    |             |
| Soil-295-01 | 0.926069    |                 | 0.276347      | 0.124205      | 0.652048       | 0.086031    |                |              | 0.727681       | 0.699629    |             |
| Sail-200-02 | 0.302364    | 0.276347        |               |               | 0.462899       |             |                |              | 0.170030       | 0.440463    |             |
| Soil-200-01 | 0.116545    | 0.124205        |               |               | 0.062656       | 0.797758    | 0.408940       | 0.310193     | 0.198112       | 0.069475    | 0.346504    |
| Soil-TP-01  | 0.702829    | 0.652048        | 0.462899      | 0.062656      |                |             |                |              | 0.455145       | 0.929731    |             |
| Soil-FR-01  | 0.078466    | 0.086031        |               | 0.797758      |                |             | 0.531973       | 0.418863     | 0.146476       |             | 0.461054    |
| Soil-AS-01  |             |                 |               | 0.408940      |                | 0.531973    |                | 0.800347     |                |             | 0.871764    |
| Soil-295-02 |             |                 |               | 0.310193      |                | 0.418863    | 0.800347       |              |                |             | 0.913323    |
| Soil-AV-01  | 0.679581    | 0.727681        | 0.170030      | 0.198112      | 0.455145       | 0.146476    |                |              |                | 0.492928    |             |
| Soil-270-01 | 0.749601    | 0.699629        | 0.440463      | 0.069475      | 0.929731       |             |                |              | 0.492928       |             |             |
| Soil-157-01 |             |                 |               | 0.346504      |                | 0.461054    | 0.871764       | 0.913323     |                |             |             |

|             | Duncan test | ; Variable: Avç | . Root Lengt | h (mm) (Alfal | fa Toxicity_20 | 190105.sta)l | Warked differe | ences are sig | nificant at p < | .05000      |             |
|-------------|-------------|-----------------|--------------|---------------|----------------|--------------|----------------|---------------|-----------------|-------------|-------------|
| Site ID     | Control     | Soll-295-01     | Soil-200-02  | Soil-200-01   | Soil-TP-01     | Soil-FR-01   | Soil-AS-01     | Soil-295-02   | Soil-AV-01      | Soil-270-01 | Soil-157-01 |
| Control     |             | 0.862747        |              | 0.623144      | 0.795996       | 0.796119     | 0.388365       |               | 0.442023        | 0.623558    | 0.927199    |
| Soil-295-01 | 0.862747    |                 |              | 0.728475      | 0.914941       | 0.917803     | 0.469781       | 0.057879      | 0.529649        | 0.728637    | 0.804689    |
| Soil-200-02 |             |                 |              |               |                |              | 0.051024       | 0.483193      |                 |             |             |
| Soil-200-01 | 0.623144    | 0.728475        |              |               | 0.792679       | 0.792689     | 0.673349       | 0.096210      | 0.740656        | 0.991823    | 0.573216    |
| Soil-TP-01  | 0.795996    | 0.914941        |              | 0.792679      |                | 0.991006     | 0.519992       | 0.065435      | 0.581147        | 0.786782    | 0.739827    |
| Sail-FR-01  | 0.796119    | 0.917803        |              | 0.792689      | 0.991006       |              | 0.520607       | 0.067560      | 0.583430        | 0.791931    | 0.740631    |
| Soil-AS-01  | 0.388365    | 0.469781        | 0.051024     | 0.673349      | 0.519992       | 0.520607     |                | 0.167780      | 0.905146        | 0.678034    | 0.350773    |
| Soil-295-02 |             | 0.057879        | 0.483193     | 0.096210      | 0.065435       | 0.067560     | 0.167780       |               | 0.157567        | 0.102174    |             |
| Soil-AV-01  | 0.442023    | 0.529649        |              | 0.740656      | 0.581147       | 0.583430     | 0.905146       | 0.157567      |                 | 0.749291    | 0.401431    |
| Sail-270-01 | 0.623558    | 0.728637        |              | 0.991823      | 0.786782       | 0.791931     | 0.678034       | 0.102174      | 0.749291        |             | 0.574464    |
| Soil-157-01 | 0.927199    | 0.804689        |              | 0.573216      | 0.739827       | 0.740631     | 0.350773       |               | 0.401431        | 0.574464    |             |

|             | Duncan test | ; Variable: Me | an Dry Weigh | nt (mg) (Alfalf | a Toxicity_20 | 190105.sta)N | /larked differe | nces are sign | nificant at p < | .05000      |             |
|-------------|-------------|----------------|--------------|-----------------|---------------|--------------|-----------------|---------------|-----------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01    | Soil-200-02  | Sail-200-01     | Soil-TP-01    | Soil-FR-01   | Soil-AS-01      | Soil-295-02   | Soil-AV-01      | Soil-270-01 | Sail-157-01 |
| Control     |             | 0.521836       | 0.234084     | 0.996713        | 0.124144      | 0.456439     | 0.297763        | 0.488057      | 0.686583        | 0.222039    | 0.670314    |
| Soil-295-01 | 0.521836    |                | 0.533655     | 0.497399        |               | 0.191071     | 0.640784        | 0.932521      | 0.326457        | 0.512360    | 0.315989    |
| Soil-200-02 | 0.234084    | 0.533655       |              | 0.227489        |               | 0.064724     | 0.847783        | 0.570735      | 0.128427        | 0.956809    | 0.121618    |
| Soil-200-01 | 0.996713    | 0.497399       | 0.227489     |                 | 0.129765      | 0.465095     | 0.287811        | 0.474089      | 0.702512        | 0.217472    | 0.679148    |
| Soil-TP-01  | 0.124144    |                |              | 0.129765        |               | 0.360120     |                 |               | 0.226337        |             | 0.227739    |
| Soil-FR-01  | 0.456439    | 0.191071       | 0.064724     | 0.465095        | 0.360120      |              | 0.089130        | 0.172845      | 0.692691        | 0.060212    | 0.710662    |
| Soil-AS-01  | 0.297763    | 0.640784       | 0.847783     | 0.287811        |               | 0.089130     |                 | 0.679296      | 0.169559        | 0.817844    | 0.161650    |
| Soil-295-02 | 0.488057    | 0.932521       | 0.570735     | 0.474089        |               | 0.172845     | 0.679296        |               | 0.301853        | 0.551885    | 0.289562    |
| Soil-AV-01  | 0.686583    | 0.326457       | 0.128427     | 0.702512        | 0.226337      | 0.692691     | 0.169559        | 0.301853      |                 | 0.120960    | 0.959401    |
| Soil-270-01 | 0.222039    | 0.512360       | 0.956809     | 0.217472        |               | 0.060212     | 0.817844        | 0.551885      | 0.120960        |             | 0.113926    |
| Soil-157-01 | 0.670314    | 0.315989       | 0.121618     | 0.679148        | 0.227739      | 0.710662     | 0.161650        | 0.289562      | 0.959401        | 0.113926    |             |

|             | Duncan test | ; Variable: Me | an Root Wei | ght (mg) (Alfa | Ifa Toxicity_2 | 0190105.sta | )Marked diffe | rences are si | gnificant at p | < .05000    |             |
|-------------|-------------|----------------|-------------|----------------|----------------|-------------|---------------|---------------|----------------|-------------|-------------|
| Site ID     | Control     | Sail-295-01    | Soil-200-02 | Soil-200-01    | Soil-TP-01     | Soil-FR-01  | Soil-AS-01    | Soil-295-02   | Sail-AV-01     | Soil-270-01 | Soil-157-01 |
| Control     |             | 0.481910       | 0.540113    | 0.630958       |                | 0.651569    | 0.456404      | 0.571759      | 0.346534       | 0.372683    | 0.345169    |
| Soil-295-01 | 0.481910    |                | 0.904793    | 0.774520       |                | 0.278904    | 0.950912      | 0.855260      | 0.118880       | 0.819517    | 0.122140    |
| Soil-200-02 | 0.540113    | 0.904793       |             | 0.852601       |                | 0.319228    | 0.865492      | 0.939865      | 0.140725       | 0.743347    | 0.143658    |
| Soil-200-01 | 0.630958    | 0.774520       | 0.852601    |                |                | 0.382780    | 0.739033      | 0.901941      | 0.179299       | 0.627019    | 0.178975    |
| Soil-TP-01  |             |                |             |                |                |             |               |               | 0.116643       |             | 0.129126    |
| Soil-FR-01  | 0.651569    | 0.278904       | 0.319228    | 0.382780       |                |             | 0.261950      | 0.340926      | 0.579544       | 0.205860    | 0.577976    |
| Soil-AS-01  | 0.456404    | 0.950912       | 0.865492    | 0.739033       |                | 0.261950    |               | 0.817575      | 0.109967       | 0.855360    | 0.113596    |
| Soil-295-02 | 0.571759    | 0.855260       | 0.939865    | 0.901941       |                | 0.340926    | 0.817575      |               | 0.153598       | 0.699798    | 0.155303    |
| Soil-AV-01  | 0.346534    | 0.118880       | 0.140725    | 0.179299       | 0.116643       | 0.579544    | 0.109967      | 0.153598      |                | 0.081999    | 0.972331    |
| Soil-270-01 | 0.372683    | 0.819517       | 0.743347    | 0.627019       |                | 0.205860    | 0.855360      | 0.699798      | 0.081999       |             | 0.085026    |
| Sail-157-01 | 0.345169    | 0.122140       | 0.143658    | 0.178975       | 0.129126       | 0.577976    | 0.113596      | 0.155303      | 0.972331       | 0.085026    |             |

|             | Duncan test | ; Variable: Me | an Shoot We | ight (mg) (Alt | falfa Toxicity_ | 20190105.st | a)Marked diffe | rences are s | ignificant at p | o < .05000  |             |
|-------------|-------------|----------------|-------------|----------------|-----------------|-------------|----------------|--------------|-----------------|-------------|-------------|
| Site ID     | Control     | Soil-295-01    | Soil-200-02 | Soil-200-01    | Soil-TP-01      | Soil-FR-01  | Soil-AS-01     | Sail-295-02  | Soil-AV-01      | Soil-270-01 | Soil-157-01 |
| Control     |             | 0.750963       | 0.183302    | 0.679342       | 0.732103        | 0.415038    | 0.343165       | 0.555150     | 0.759940        | 0.259289    | 0.832069    |
| Sail-295-01 | 0.750963    |                | 0.282700    | 0.492126       | 0.540892        | 0.282998    | 0.486820       | 0.750463     | 0.979344        | 0.382890    | 0.895776    |
| Soil-200-02 | 0.183302    | 0.282700       |             | 0.093212       | 0.108015        |             | 0.655026       | 0.415967     | 0.280815        | 0.800621    | 0.244959    |
| Sail-200-01 | 0.679342    | 0.492126       | 0.093212    |                | 0.921109        | 0.644142    | 0.193439       | 0.341899     | 0.499148        | 0.139288    | 0.555675    |
| Soil-TP-01  | 0.732103    | 0.540892       | 0.108015    | 0.921109       |                 | 0.599219    | 0.219159       | 0.380699     | 0.546437        | 0.159523    | 0.603667    |
| Soil-FR-01  | 0.415038    | 0.282998       |             | 0.644142       | 0.599219        |             | 0.093384       | 0.182799     | 0.286978        | 0.063818    | 0.325931    |
| Soil-AS-01  | 0.343165    | 0.486820       | 0.655026    | 0.193439       | 0.219159        | 0.093384    |                | 0.671201     | 0.488125        | 0.822266    | 0.436932    |
| Soil-295-02 | 0.555150    | 0.750463       | 0.415967    | 0.341899       | 0.380699        | 0.182799    | 0.671201       |              | 0.747394        | 0.543245    | 0.679421    |
| Soil-AV-01  | 0.759940    | 0.979344       | 0.280815    | 0.499148       | 0.546437        | 0.286978    | 0.488125       | 0.747394     |                 | 0.381843    | 0.908937    |
| Soil-270-01 | 0.259289    | 0.382890       | 0.800621    | 0.139288       | 0.159523        | 0.063818    | 0.822266       | 0.543245     | 0.381843        |             | 0.337648    |
| Soil-157-01 | 0.832069    | 0.895776       | 0.244959    | 0.555675       | 0.603667        | 0.325931    | 0.436932       | 0.679421     | 0.908937        | 0.337648    |             |



**Figure 1.** Summary of correlations between TOC and 28-, 35-, and 42-d *Hyalella azteca* survival and AVS and 42-d *Hyalella azteca* survival.

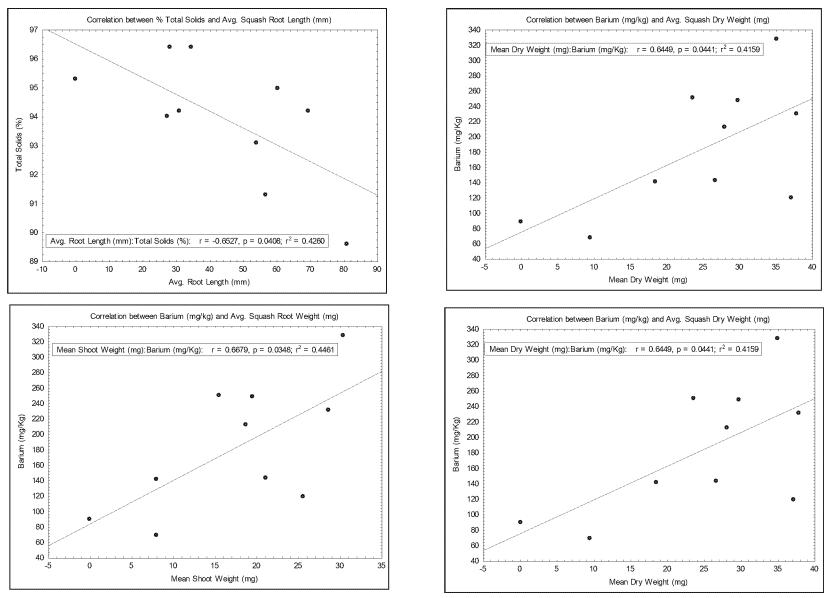



Figure 2. Summary of correlations associated with soil chemistry and squash toxicity.

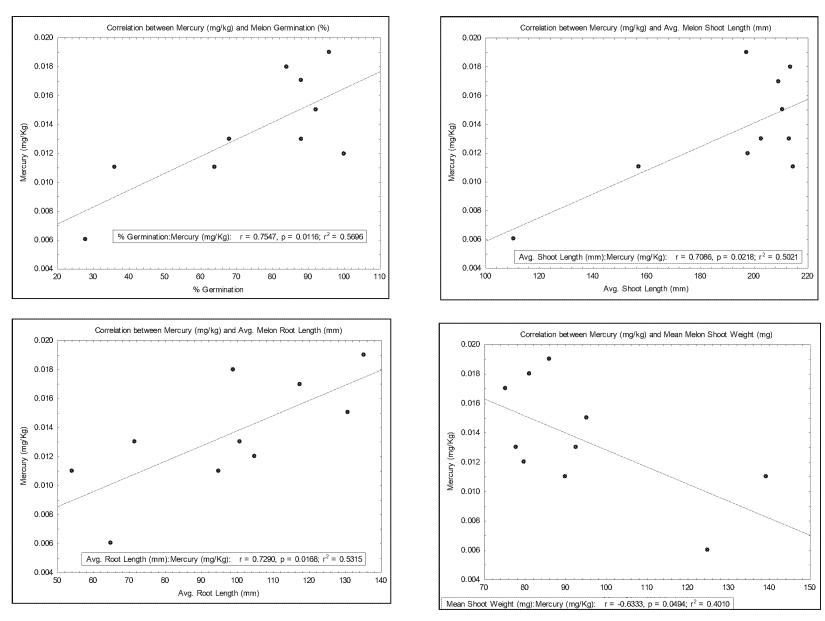
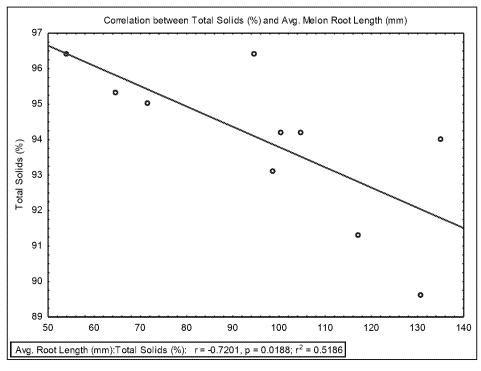




Figure 3a. Summary of correlations associated with soil chemistry and melon toxicity.






Figure 3b. Summary of correlations associated with soil chemistry and melon toxicity.

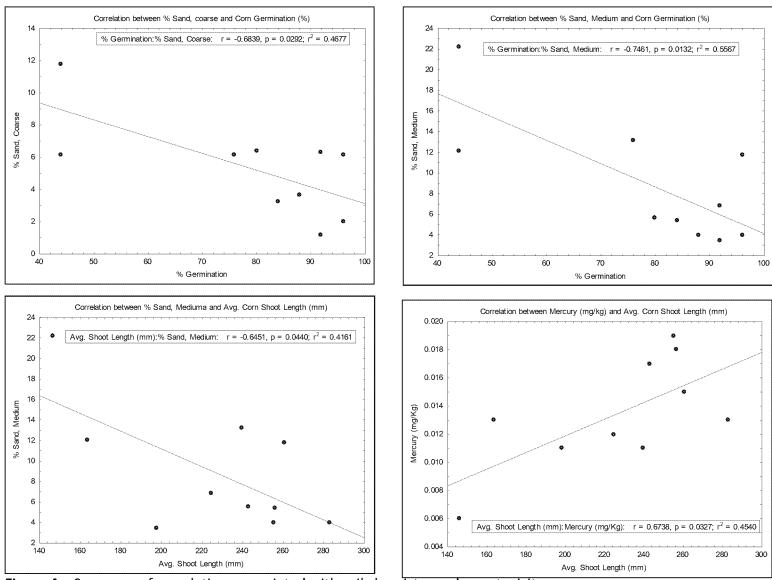



Figure 4a. Summary of correlations associated with soil chemistry and corn toxicity.

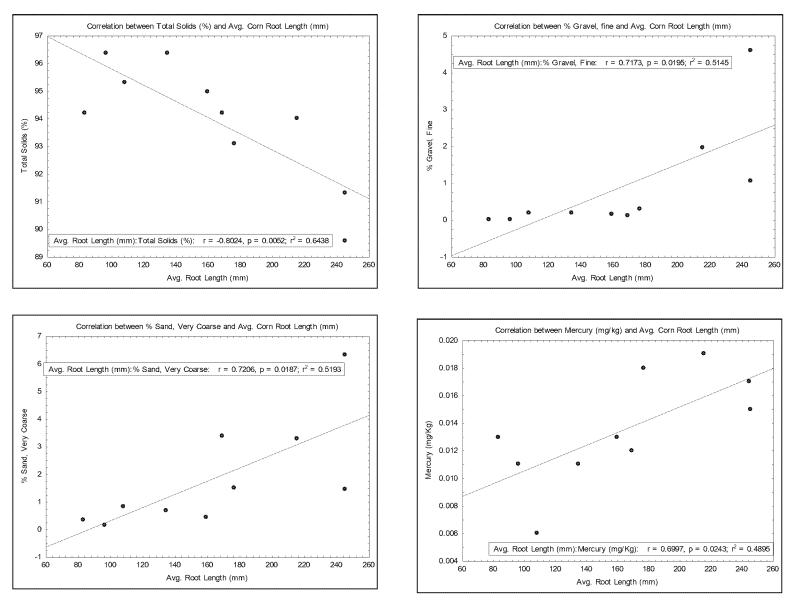
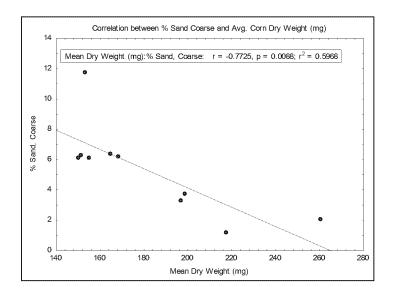
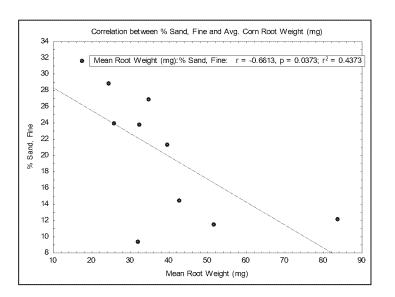





Figure 4b. Summary of correlations associated with soil chemistry and corn toxicity.





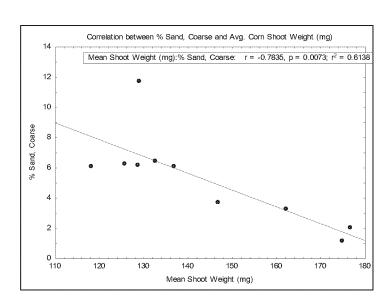
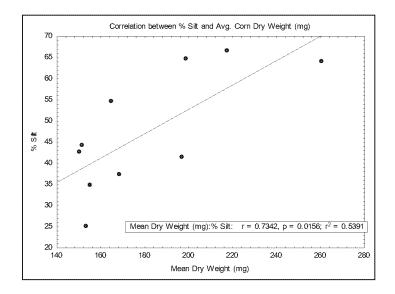
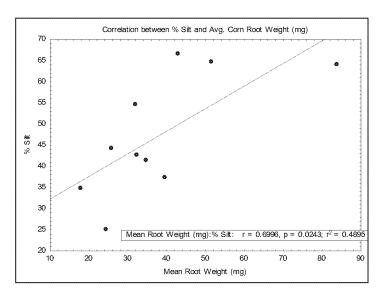





Figure 4c. Summary of correlations associated with soil chemistry and corn toxicity.





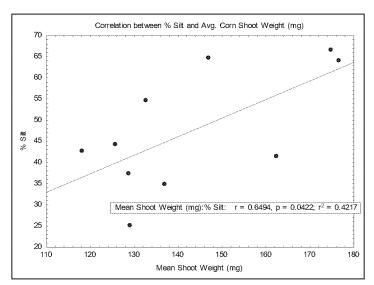



Figure 4d. Summary of correlations associated with soil chemistry and corn toxicity.

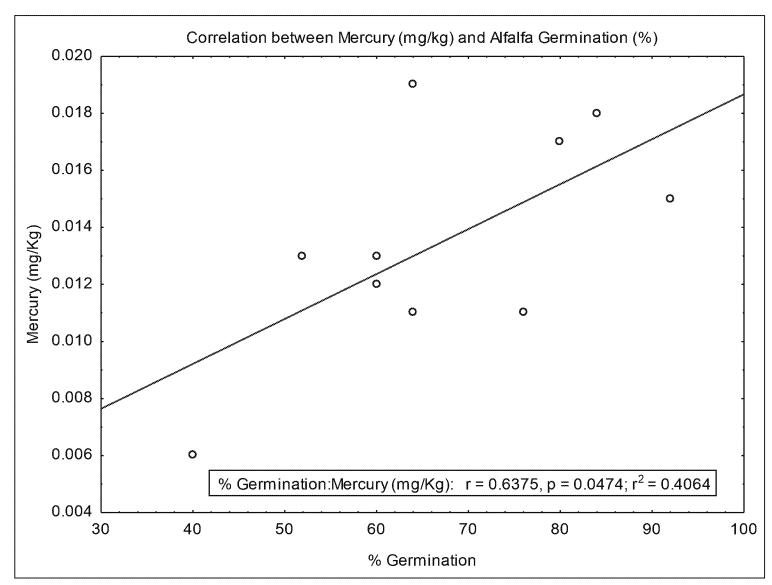



Figure 5a. Summary of correlations associated with soil chemistry and alfalfa germination.

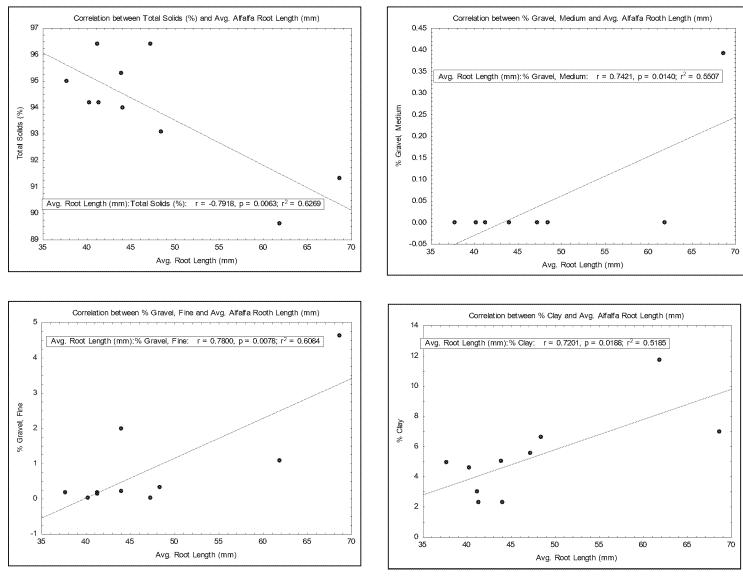
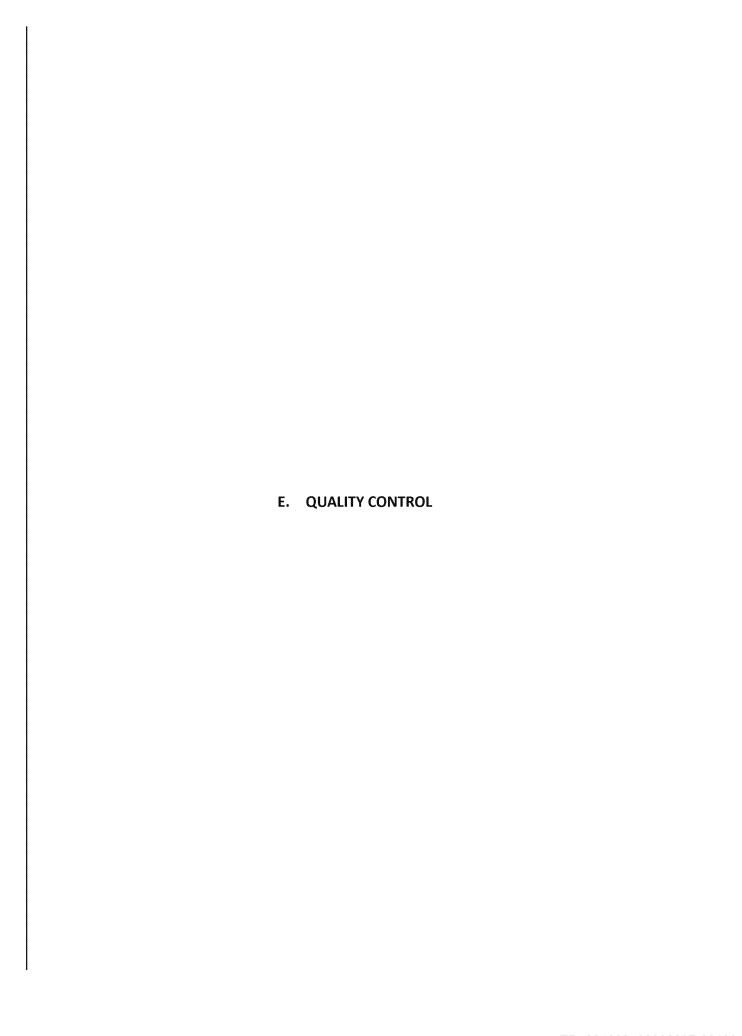
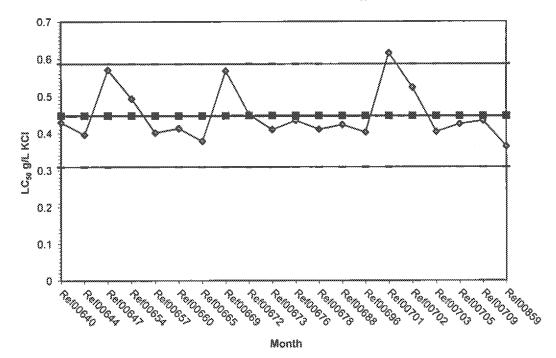





Figure 5b. Summary of correlations associated with soil chemistry and alfalfa root length.



H. azteca Reference Toxicant 96-h LC<sub>50</sub> Data for KCI (g/L)



| Test Log# | Org Batch# | Dates    | Values | Mean   | -1 SD  | -2 SD  | +1 SD  | +2 SD  |
|-----------|------------|----------|--------|--------|--------|--------|--------|--------|
| Ref00640  | •          | 05/12/15 | 0.4300 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00644  |            | 05/19/15 | 0.3968 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00647  |            | 06/09/15 | 0.5707 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00654  | 024        | 06/23/15 | 0.4938 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00657  | 026        | 06/30/15 | 0.4016 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00660  | 029        | 07/15/15 | 0.4134 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00665  | 034        | 08/04/15 | 0.3788 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Re(00669  | 036        | 08/11/15 | 0.5682 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00672  | 039        | 08/18/15 | 0.4510 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00673  | 041        | 08/19/15 | 0.4104 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00676  | 044        | 08/25/15 | 0.4351 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00678  | 047        | 09/01/15 | 0.4113 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00688  | 053        | 09/16/15 | 0.4241 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00696  | 060        | 10/06/15 | 0.4032 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00701  | 064        | 10/13/15 | 0.6154 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Re(00702  | 065        | 10/19/15 | 0.5238 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00703  | 066        | 10/27/15 | 0.4048 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00705  | 068        | 11/03/15 | 0.4259 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00709  | 069        | 11/10/15 | 0.4352 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |
| Ref00859  |            | 11/08/18 | 0.3652 | 0.4479 | 0.3786 | 0.3093 | 0.5173 | 0.5866 |

| Mean | 0.4479  |
|------|---------|
| SD   | 0.0693  |
| CV%  | 15.4790 |

Report Date: Test Code:

19 Dec-18 11:17 (p 1 of 2) Ref00859 | 05-6094-0559

| `<br>`\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hyallola 96-h \                                       | Nater Column S                                          | iurviv                                  | al Tost                                        |                                                                      |                                         |                          |             |                                         |              |                        | Tetra                                   | Tech, Inc.                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|--------------------------|-------------|-----------------------------------------|--------------|------------------------|-----------------------------------------|-----------------------------------------|
| <i>\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\righta\right\right\right\right\right\right\right\right\right\right\rig</i> | Batch IO:<br>Start Date:<br>Ending Date:<br>Duration: | 17-0980-0364<br>08 Nov-18 16:3<br>12 Nov-18 15:4<br>95h |                                         | Tast Type:<br>Protocol:<br>Species:<br>Source: | Survival (96h)<br>EPA/600/R-99/<br>Hyalelia azteca<br>Aquatic Biosys |                                         |                          |             | Analyst:<br>Olluent:<br>Brine:<br>Age:  | Mos<br>7d    | I-Hard Synth           | otic Water                              |                                         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 20-5169-0284<br>08 Nov-18 15:3                          | 0                                       | Code:<br>Material:                             | 7A4A4F2C<br>Potassium chic                                           |                                         |                          |             | Client:<br>Project:                     |              | a Tech<br>cronce Toxic | ant                                     |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Receive Date:<br>Sample Age:                          | 60m                                                     |                                         | Source:<br>Station:                            | Reference Tox                                                        | icaru                                   |                          |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comparison S                                          | iummary                                                 | *************************************** |                                                |                                                                      | *************************************** | connecennonennonnonnides | *********** | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |                        | r0000010010010011111111111111111111111  | *************************************** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis ID                                           | Endpoint                                                |                                         | NOEI                                           | LOEL                                                                 | TOEL                                    | PMSD                     | TU          | Mε                                      | thod         |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02-9216-8982                                          | 48h Survival Ra                                         | 1(0                                     | 0.25                                           | 0.5                                                                  | 0.3536                                  | 10.6%                    | XVVVVVVVV   |                                         |              | Aultiple Com           |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02-8346-1031                                          | 96h Survival Ra                                         | ate                                     | 0.25                                           | 0.5                                                                  | 0.3536                                  | 11.9%                    |             | Du                                      | nnett N      | Auttiple Com           | parison Tes                             | t                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Point Estimate                                        | a Summary                                               |                                         |                                                |                                                                      |                                         |                          |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis ID                                           | Endpoint                                                |                                         | Love                                           | gm/L                                                                 | 95% LCL                                 | 95% UCL                  | TU          | Mi                                      | thod         |                        | 200000000000000000000000000000000000000 | ******************************          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06-3788-9698                                          | 48h Survival Ra                                         | ato                                     | EC5                                            | 0,1846                                                               | 0.08924                                 | 0.3                      |             | Lir                                     | icar int     | erpolation (K          | CPIN)                                   |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC10                                           | 0.2442                                                               | 0.1501                                  | 0.2859                   |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC15                                           | 0.263                                                                | 0.2039                                  | 0.2963                   |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC20                                           |                                                                      | 0.2428                                  | 0.3093                   |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC25                                           |                                                                      | 0.2595                                  | 0.3223                   |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC40                                           |                                                                      | 0.3082                                  | 0.3606                   |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         | v                                       | EC50                                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                              | 0.3399                                  | 0.3868                   | caccanana.  |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04-9268-0621                                          | 96h Survival R                                          | ate                                     | ECS                                            | 0.1903                                                               | 0.1489                                  | 0.2986                   |             | Lir                                     | ear int      | erpolation (If         | CPIN)                                   |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC10                                           |                                                                      | 0.1793                                  | 0.283                    |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC15                                           |                                                                      | 0.2357                                  | 0.2951                   |             |                                         |              |                        |                                         |                                         |
| ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                         |                                         | EC20                                           |                                                                      | 0.2547                                  | 0.3068                   |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC25                                           |                                                                      | 0.2705                                  | 0.3194                   |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         | EC40                                           |                                                                      | 0.3173                                  | 0.3578                   |             |                                         |              |                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***************************************               | 3000010n/mbrassassassassassassassassassassassassass     |                                         | EC50                                           | 0.3652                                                               | 0.347                                   | 0.3839                   |             |                                         |              | www.comoooooooooo      | 20000000                                | *************************************** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | Rate Summary                                            |                                         |                                                |                                                                      |                                         |                          |             |                                         |              |                        | ene 2016                                | aratit                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-gm/L                                                | Control Type                                            | Cou                                     | ***************************************        | ***************************************                              | 95% UCL                                 | Min                      | Ma          |                                         | d Err        | Std Dov                | CV%<br>5.13%                            | %Effect<br>0.0%                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                     | Dilution Water                                          | 4                                       | 0.978                                          |                                                                      | 1                                       | 0.9                      | 1           |                                         | )25<br>??e   | 0.05<br>0.05           | 5.13%<br>5.13%                          | 0.0%                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.125                                                 |                                                         | 4                                       | 0.975                                          |                                                                      | 1                                       | 0.9                      | 1           |                                         | )25<br>)4787 | 0.00                   | 10.94%                                  | 10.26%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                  |                                                         | 4                                       | 0.878                                          |                                                                      | 0.1046                                  | 0.8<br>0                 | 0.1         |                                         | )25          | 0.05                   | 200.0%                                  | 97.44%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                   |                                                         | 4                                       | 0.025<br>0                                     | 0                                                                    | 0.10%                                   | 0                        | 0.1         | 0.                                      | 356.43       | 0.00                   | 200.070                                 | 100.0%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 2                                                   |                                                         | 4                                       | 0                                              | 0                                                                    | 0                                       | o<br>o                   | 0           | Ŏ                                       |              | 0                      |                                         | 100.0%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96h Survival F                                        |                                                         |                                         | 000000000000000000000000000000000000000        | ***************************************                              |                                         |                          | 0000000     | opopononononononononon                  |              |                        |                                         | 000000000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | Control Type                                            | Cou                                     | nt Mear                                        | 95% LCL                                                              | 95% UCL                                 | Min                      | Ma:         | x St                                    | d Err        | Std Dov                | CV%                                     | %Effect                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                     | Dilution Water                                          | 4                                       | 0.9                                            | 0.7701                                                               | 1                                       | 0.8                      | 3           | 0.0                                     | )4082        | 0.08165                | 9.07%                                   | 0.0%                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.125                                                 |                                                         | 4                                       | 0.975                                          | 0.8954                                                               | 1                                       | 0.9                      | 1           | 0.0                                     | 025          | 0.05                   | 5.13%                                   | -8.33%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                  |                                                         | 4                                       | 0.85                                           | 0.7581                                                               | 0.9419                                  | 0.8                      | 0.9         | 0.0                                     | 02887        | 0.05774                | 6.79%                                   | 5.56%                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                   |                                                         | 4                                       | 0.025                                          | 0                                                                    | 0.1046                                  | 0                        | 0.1         | 0.0                                     | 025          | 0.05                   | 200.0%                                  | 97.22%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                     |                                                         | 4                                       | 0                                              | 0                                                                    | 0                                       | 0                        | 0           | 0                                       |              | 0                      |                                         | 100.0%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                     |                                                         | 4                                       | 0                                              | 0                                                                    | 0                                       | 0                        | 0           | 0                                       |              | 0                      |                                         | 100.0%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                         |                                         |                                                |                                                                      |                                         |                          |             |                                         |              |                        |                                         |                                         |

CETIS™ v1.8.7.21

#### **CETIS Summary Report**

Report Date:

19 Doc-18 11:17 (p 2 of 2) Ref00859 | 05-6094-0559

Test Code: Ref00859 | 05-6094-0559

Tetra Tech, Inc.

| Hyallela S | 6-h Water Column | Survival T | est   |       | Tetra Tech, inc. |  |
|------------|------------------|------------|-------|-------|------------------|--|
| 48h Surv   | val Rate Detail  |            |       |       |                  |  |
| C-gm/L     | Control Type     | Rep 1      | Rop 2 | Rep 3 | Rop 4            |  |
| 0          | Dilution Water   | 1          | 3     | 0.9   | 1                |  |
| 0.125      |                  | 1          | 1     | 0.9   | 1                |  |
| 0.25       |                  | 0.8        | *     | 0.9   | 0.8              |  |
| 0.5        |                  | 0          | 0.1   | 0     | 0                |  |
| 1          |                  | 0          | 0     | 0     | 0                |  |
| 2          |                  | 0          | 0     | 0     | 0                |  |

| do do s | M        | MA 6  | Mr 85  |
|---------|----------|-------|--------|
| 538589  | Survival | 26283 | LFOX38 |

| C-gm/L | Control Type   | Rep 1 | Rop 2 | Rop 3 | Rep 4 |
|--------|----------------|-------|-------|-------|-------|
| 0      | Dilution Water | 0.9   | 0.8   | 0.9   | 1     |
| 0.125  |                | 1     | 1     | 0.9   | 1     |
| 0.25   |                | 0.8   | 0.9   | 0.9   | 8.0   |
| 0,5    |                | 0     | 0.1   | 0     | 0     |
| 1      |                | 0     | 0     | 0     | 0     |
| 2      |                | 0     | 0     | 0     | 0     |

Analyst: OA:

|                                         |                    |         | MMDDYYYY HI          | •           | ×                                   | FINISH Date/Time (MMDDYYYY HH:MM):  u (2)1/6 IS - 4/5 |              |                       |                                         |  |
|-----------------------------------------|--------------------|---------|----------------------|-------------|-------------------------------------|-------------------------------------------------------|--------------|-----------------------|-----------------------------------------|--|
|                                         |                    |         | ch Number:<br>LAG OX | ł44         |                                     | Test Substance/Lot Number:<br><u>ドイナーを下下もつる</u>       |              |                       |                                         |  |
|                                         | Client/Proj        | ect:    | Navnja M             |             | •                                   | Species/Sour                                          | ce/Hatch Dat | e and Time<br>そる&     |                                         |  |
|                                         | Concentr<br>Replic | ation & |                      |             | er alive/hour                       | of test                                               |              | # alive<br># exposed  | Comments                                |  |
|                                         | Units:             |         | Start                | 24          | 48                                  | 72                                                    | 96           | (percent<br>survival) | Physical April 2 pmg                    |  |
|                                         |                    | A       | 10                   | 10          | /()                                 | q                                                     | 9            |                       | *************************************** |  |
|                                         | 0 -                | В       | lυ                   | 10          | Ø                                   | S                                                     | \$           | Gn                    |                                         |  |
|                                         |                    | C       | 10                   | 10          | 9                                   | @' <del>'\</del> \\\                                  | ٩            | 10                    |                                         |  |
|                                         |                    | D       | ΙŪ                   | Iδ          | /0                                  | (0                                                    | <u>lÓ</u>    |                       |                                         |  |
|                                         |                    | Α       | <u>lb</u>            | JO          | / 0                                 | ξο                                                    | <u>ro</u>    | 98                    |                                         |  |
|                                         | 0.125.             | В       |                      | <i>20</i> ' | 39 <sup>99</sup> /2 <sup>3</sup> 00 | 10,25,30                                              | 30           |                       |                                         |  |
|                                         |                    | C       | <u>lo</u>            | 10          | 9                                   | 9                                                     | 9            |                       |                                         |  |
|                                         |                    | D       |                      | <u>ID</u>   | <u> </u>                            | \0                                                    | Û            |                       |                                         |  |
|                                         |                    | Α       | 10                   | 10          | 8                                   | \$                                                    | 8            |                       |                                         |  |
|                                         | 0.25 .             | 8       |                      | 10          | 10                                  | (0                                                    | 9            | a K                   |                                         |  |
|                                         |                    | C       |                      | 0]          | <u> </u>                            | ٩                                                     | 9            | 0 -                   |                                         |  |
|                                         |                    | D       | <u>lo</u>            | <u>IÕ</u>   | <u> </u>                            | <u> </u>                                              | \$           |                       | 000000000000000000000000000000000000000 |  |
|                                         |                    | Α       |                      | 3           | 0                                   | 0                                                     | 0            |                       |                                         |  |
| *************************************** | 0.5.               | 8       | <u>lo</u>            | 2           |                                     |                                                       |              | l 15                  |                                         |  |
|                                         |                    | С       | U                    | 4           | 0                                   | 0                                                     | <u> </u>     | <b>^</b>              |                                         |  |
|                                         |                    | 0       | (O                   | <u>2</u>    |                                     | 0                                                     | <u> </u>     |                       |                                         |  |
|                                         | :                  | Α       | 0                    | 0           | 0                                   | 0                                                     |              |                       |                                         |  |
|                                         |                    | 8       | <u>ID</u>            | <u> </u>    | <u> </u>                            | ٥                                                     |              | l                     |                                         |  |
|                                         |                    | C       | 10                   | 0           | <u> </u>                            | <u> </u>                                              | <u> </u>     | V                     |                                         |  |
|                                         |                    | D       | 10                   | 0           | <u>d</u>                            | )<br>                                                 |              |                       |                                         |  |
|                                         |                    | Α       | 10                   |             | 0                                   | 0                                                     | 6            |                       | ab.                                     |  |

Tetra Tech, Inc. **Ecological Testing Facility** 

ANALYST

TIME

8

C

O

2\_

10

0

10

1O W

1630

0

0770

Data Checked and Approved

ð

 $\circ$ Ö

0

٥

(W)

10<u>34</u>

Ō

START Date/Time (MMDDYYYY HH:MM):

11-8-18 16:30

Dilution Water/Batch Number:

Not flow Ha Water LASCORTS

Client/Project:

<u>In-Hony Movery Mhow</u>

FINISH Date/Time (MMDDYYYY HH:MM):

11/12/18 1545

Test Substance/Lot Number:

KU / ETF 818

Species/Source/Hatch Date and Time:

Maztera ABS 7-8layida

| Test Conc.                             | Chemical   |              |                     | Comments |            |                                         |
|----------------------------------------|------------|--------------|---------------------|----------|------------|-----------------------------------------|
| Units:                                 | Parameters | O            | 48                  | વા       |            | womman                                  |
| 30000000000000000000000000000000000000 | Cond (µS)  | 300          | 348                 | 3 6      |            |                                         |
| $\cap$                                 | DO (mg/L)  | 8,1          | 9.9                 | 9.2      |            |                                         |
|                                        | pH (su)    | 7.3          | 7.1                 | 7.9      |            |                                         |
|                                        | Temp (°C)  | 21-15- 23.1  | 24 D & S . O        | 22.9     |            |                                         |
|                                        | Cond (µS)  | 500          | 604                 | 595      |            |                                         |
| 0.125                                  | DO (mg/L)  | 8.1          | 9,5                 | 8 - 5    |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| / · i * _ j                            | pH (su)    | フ・フ          | 7.4                 | 7. 8     |            |                                         |
|                                        | Temp (°C)  | 2442, 931    | J3.0                | <u> </u> |            |                                         |
|                                        | Cond (µS)  | 7 00         | ४५०                 | 1267     |            |                                         |
| o. 25                                  | DO (mg/L)  | 7.8          | 4.7.                | 8.5      |            |                                         |
| J. Q.J                                 | pH (su)    | 7.7          | 2.4                 | 7.8      |            |                                         |
|                                        | Temp (°C)  | 24-15 33.1   | 0.86                | 2a S     |            |                                         |
|                                        | Cand (µS)  | 1119         | 1336                | 852      |            |                                         |
| 0.5                                    | DO (mg/L)  | 8.0          | 4,>                 | 8 . 5    |            |                                         |
|                                        | pH (su)    | フ・ケ          | フ・リ                 | ٦, ٩     |            |                                         |
|                                        | Temp (°C)  | <u> </u>     | 23.0                | 229      |            |                                         |
|                                        | Cond (µS)  | 1437         | ეე <i>სს</i> *      |          |            |                                         |
| -                                      | DO (mg/L)  | 7.4          | 7.8 *               |          | \          |                                         |
| •                                      | pH (su)    | 7.7          | 7:3 %               |          |            |                                         |
|                                        | Temp (°C)  | 25.84 83.1   | 90.4 ×              |          | \          |                                         |
|                                        | Cond (µS)  | 3490         | 39 <i>00</i> %      |          |            |                                         |
| 7                                      | DO (mg/L)  | 8.0          | 7.7 %               |          |            |                                         |
|                                        | pH (su)    | <b>ラ</b> ・ラ  | 7.6 ×               | <u> </u> | the second | <u> </u>                                |
|                                        | Temp (°C)  | 5. Jan 7 331 | ∂2.4 ×              | W.       | N)         | ौ्षार                                   |
| į                                      | Analyst    | l ph         | 5r *                | AS       |            |                                         |
| Time                                   | e Analyzed | [530         | v \$00 <sup>*</sup> | 1313     |            |                                         |

Tetra Tech, Inc. Ecological Testing Facility

Data Checked and Approved:

2018

# Toxicity Test Proceding Check Sheet

Date\_11|S||1|

Test ID Number\_RefoogS9\_

Type of Test Chamber 300 ML byolds

Number of replicates per concentration U

Specify vessel type and volume used to measure and deliver effluent and dilutent to test chambers.

Graduated Cylinder(s)\_\_\_\_\_ Pipet(s)\_\_\_\_\_

Volumetric Flask(s)

Specify materials used to place the test organisms into the test chambers \(\frac{1}{4}\cdot\) \(\frac{1}{2}\cdot\) \(\frac{1}{2}\cdot\)

Specify Randomization Template Used\_\_\_\_\_\_

| *************************************** | gaaaagaaaaaaaaaaag |                  |  |
|-----------------------------------------|--------------------|------------------|--|
| Loading QC<br>Initials                  |                    | Feeding Schedule |  |
| Test ID Number Initials                 | Rec 00859          | Exposure Chamber |  |

Total Vessel Capacity 300m \ Not fed\_\_\_\_\_\_

Test Solution volume 20m\ Fed Daily\_\_\_\_\_

Tetra Tech, Inc. Ecological Testing Facility

Specify below the number of milliliters (mts) of diluent and effluent measured out per concentration in this test.

|                                             |                            |        |                   |               | 000000000000000000000000000000000000000 | ************************ | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
|---------------------------------------------|----------------------------|--------|-------------------|---------------|-----------------------------------------|--------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|                                             | Total Volume               | ZIW    | 2<br>B            | A 0000        | C) \$ (C)                               | 900c                     | 2000                                    |                                         | χ.                                      |
| (S (ES).                                    | ë                          | %<br>% | <u> </u>          | 000)          | 3                                       | s() <i>0</i> )           | 0                                       |                                         |                                         |
| neasured out per concentration in this test | Working Stock<br>Solution  | 0      | 767.0<br>8.17.9/L | 7/250<br>CRO) | 76/00/                                  | 7 (% X 0)                | 2000                                    |                                         |                                         |
| measured out per                            | Treatment<br>Concentration | 0      | 0.187             | 40            | <u>ئ</u>                                | 2                        | ر<br>م<br>م                             |                                         |                                         |



incubator ID#

Type of food,